Citation: Wang Lei, Li Xue, Zheng Fei, Guo Yuxin, Zhang Zhiqiang, Chi Haijun, Dong Yan, Wang Cuiping, Lu Gonghao. Preparation of Polymer Nanotube Using Self-Assembled Metal Organic Nanotube as Template[J]. Acta Chimica Sinica, ;2015, 74(3): 259-264. doi: 10.6023/A15100655 shu

Preparation of Polymer Nanotube Using Self-Assembled Metal Organic Nanotube as Template

  • Corresponding author: Lu Gonghao, ghlu@ustl.edu.cn
  • Received Date: 13 October 2015

    Fund Project: the Natural Science Foundation of Liaoning Province of China 2015020246

Figures(8)

  • Hollow nano-material is one of the hot researches in recent years because of special optical, electrical, magnetic and catalytic properties. Polymer nanotube (PNT) is a polymer nano-material with tubular structure. Template method is an effective preparation method for tubular polymer nano-materials. In this study, we have developed a simple technique for the fabrication of polymer nanotubes by using self-assembled metal organic nanotube (MONT) as a template and multiple amine and acid as precursor molecules. An amphiphilic molecule (N-tetradecanoic glycylglycine, 1) was firstly synthesized by the coupling reaction of N-tetradecanoic acid and glycylglycine ethyl ester under the function of 1-ethyl-3-(3-dimethylamin-opropyl)carbodiimide hydrochloride (EDC·HCl), followed by a hydration process. The amphiphilic molecule 1 was successfully obtained in high yields. MONT was then prepared by the self-assembly of 1 with copper(Ⅱ) nitrate in methanol. A solution of copper(Ⅱ) nitrate in water was slowly added into a solution of 1 in methanol. The mixed solution was stirred for 24 h at room temperature and MONT was obtained by filtration, washing with water and freeze-dry. And finally, template reactions were carried out as follows: a certain amount of MONT was dispersed in tetrahydrofuran (THF), and then the multiple amine was added to complex with copper ions on the surface of MONT. The mixed solution was stirred for 3 h at room temperature and a coated layer formed on the surface of MONT. The coated layer on the nanotube surface was further cross-linked by an activated ester of citric acid. Finally, the self-assembled template was removed by hot filtration and the PNTs with good dispersibility in water were obtained. The surface topography, composition and structure of PNTs were characterized by scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results showed that up to 80% cross-linked products form PNTs when the amount of multiple amines is 0.4 molar equivalent of MONT. The lengths of PNTs are about 500 nm~3 μm, inner diameters are 60~100 nm and outer diameters are 80~120 nm.
  • 加载中
    1. [1]

      Fu, G. D.; Li, G. L.; Neoh, K. G.; Kang, E. T. Prog. Polym. Sci. 2011, 36, 127. 

    2. [2]

      Yin, Z.; Zheng, Q. Adv. Energy Mater. 2012, 2, 179. 

    3. [3]

      Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.

    4. [4]

      Yao, Y.; Xue, M.; Chen, J.; Zhang, M.; Huang, F. J. Am. Chem. Soc. 2012, 134, 15712. 

    5. [5]

      Yu, G.; Ma, Y.; Han, C.; Yao, Y.; Tang, G.; Mao, Z.; Gao, C.; Huang, F. J. Am. Chem. Soc. 2013, 135, 10310. 

    6. [6]

      Dong, S.; Zheng, B.; Xu, D.; Yan, X.; Zhang, M.; Huang, F. Adv. Mater. 2012, 24, 3191.

    7. [7]

      Dong, S.; Luo, Y.; Yan, X.; Zheng, B.; Ding, X.; Yu, Y.; Ma, Z.; Zhao, Q.; Huang, F. Angew. Chem. 2011, 123, 1945.

    8. [8]

       

    9. [9]

      Thorkelsson, K.; Bai, P.; Xu, T. Nano Today 2015, 10, 48.

    10. [10]

      Stupp, S. I.; Palmer, L. C. Chem. Mater. 2014, 26, 507. 

    11. [11]

      Chapman, R.; Danial, M.; Koh, M. L.; Jolliffe, K. A.; Perrier, S. Chem. Soc. Rev. 2012, 41, 6023. 

    12. [12]

      Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Chem. Rev. 2012, 112, 3959.

    13. [13]

      Liu, Y.; Goebl, J.; Yin, Y. Chem. Soc. Rev. 2013, 42, 2610. 

    14. [14]

      Yang, X.; Tang, H.; Cao, K.; Song, H.; Sheng, W.; Wu, Q. J. Mater. Chem. 2011, 21, 6122. 

    15. [15]

      Leenaars, A. F. M.; Keizer, K.; Burggraaf, A. J. J. Mater. Sci. 1984, 19, 1077. 

    16. [16]

       

    17. [17]

      Martin, C. R. Science 1994, 266, 1966. 

    18. [18]

      Steinhart, M.; Wendorff, J.; Greiner, A.; Wehrspohn, R.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U. Science 2002, 296, 1997.

    19. [19]

      Zhang, J.; Li, C. M. Chem. Soc. Rev. 2012, 41, 7016. 

    20. [20]

      Wei, Y.; Sun, D.; Yuan, D.; Liu, Y.; Zhao, Y.; Li, X.; Wang, S.; Dou, J. M.; Wang, X. P.; Hao, A. Y.; Sun, D. F. Chem. Sci. 2012, 3, 2282. 

    21. [21]

      Panda, T.; Kundu, T.; Banerjee, R. Chem. Commun. 2012, 48, 5464.

    22. [22]

      Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. Rev. 2005, 105, 1401.

    23. [23]

      Shimizu, T. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2601. 

    24. [24]

      Shimizu, T.; Minamikawa, H.; Kogiso, M.; Aoyagi, M.; Kameta, N.; Ding, W.; Masuda, M. Polym. J. 2014, 46, 858.

    25. [25]

      Kameta, N. J. Inclusion Phenom. Macrocyclic Chem. 2014, 79, 1. 

    26. [26]

      Kogiso, M.; Zhou, Y.; Shimizu, T. Adv. Mater. 2007, 19, 242.

    27. [27]

      Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813. 

    28. [28]

      Lee, J.; Kim, S. M.; Lee, I. S. Nano Today 2014, 9, 631. 

    29. [29]

    30. [30]

      Guix, M.; Mayorga-Martinez, C. C.; Merkoci, A. Chem. Rev. 2014, 114, 6285.

    31. [31]

      Mathews, A. S.; Kim, I.; Ha, C. S. Macromol. Res. 2007, 15, 114. 

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(0)
  • Abstract views(1153)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return