Citation: Wang Lei, Li Xue, Zheng Fei, Guo Yuxin, Zhang Zhiqiang, Chi Haijun, Dong Yan, Wang Cuiping, Lu Gonghao. Preparation of Polymer Nanotube Using Self-Assembled Metal Organic Nanotube as Template[J]. Acta Chimica Sinica, ;2015, 74(3): 259-264. doi: 10.6023/A15100655 shu

Preparation of Polymer Nanotube Using Self-Assembled Metal Organic Nanotube as Template

  • Corresponding author: Lu Gonghao, ghlu@ustl.edu.cn
  • Received Date: 13 October 2015

    Fund Project: the Natural Science Foundation of Liaoning Province of China 2015020246

Figures(8)

  • Hollow nano-material is one of the hot researches in recent years because of special optical, electrical, magnetic and catalytic properties. Polymer nanotube (PNT) is a polymer nano-material with tubular structure. Template method is an effective preparation method for tubular polymer nano-materials. In this study, we have developed a simple technique for the fabrication of polymer nanotubes by using self-assembled metal organic nanotube (MONT) as a template and multiple amine and acid as precursor molecules. An amphiphilic molecule (N-tetradecanoic glycylglycine, 1) was firstly synthesized by the coupling reaction of N-tetradecanoic acid and glycylglycine ethyl ester under the function of 1-ethyl-3-(3-dimethylamin-opropyl)carbodiimide hydrochloride (EDC·HCl), followed by a hydration process. The amphiphilic molecule 1 was successfully obtained in high yields. MONT was then prepared by the self-assembly of 1 with copper(Ⅱ) nitrate in methanol. A solution of copper(Ⅱ) nitrate in water was slowly added into a solution of 1 in methanol. The mixed solution was stirred for 24 h at room temperature and MONT was obtained by filtration, washing with water and freeze-dry. And finally, template reactions were carried out as follows: a certain amount of MONT was dispersed in tetrahydrofuran (THF), and then the multiple amine was added to complex with copper ions on the surface of MONT. The mixed solution was stirred for 3 h at room temperature and a coated layer formed on the surface of MONT. The coated layer on the nanotube surface was further cross-linked by an activated ester of citric acid. Finally, the self-assembled template was removed by hot filtration and the PNTs with good dispersibility in water were obtained. The surface topography, composition and structure of PNTs were characterized by scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results showed that up to 80% cross-linked products form PNTs when the amount of multiple amines is 0.4 molar equivalent of MONT. The lengths of PNTs are about 500 nm~3 μm, inner diameters are 60~100 nm and outer diameters are 80~120 nm.
  • 加载中
    1. [1]

      Fu, G. D.; Li, G. L.; Neoh, K. G.; Kang, E. T. Prog. Polym. Sci. 2011, 36, 127. 

    2. [2]

      Yin, Z.; Zheng, Q. Adv. Energy Mater. 2012, 2, 179. 

    3. [3]

      Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.

    4. [4]

      Yao, Y.; Xue, M.; Chen, J.; Zhang, M.; Huang, F. J. Am. Chem. Soc. 2012, 134, 15712. 

    5. [5]

      Yu, G.; Ma, Y.; Han, C.; Yao, Y.; Tang, G.; Mao, Z.; Gao, C.; Huang, F. J. Am. Chem. Soc. 2013, 135, 10310. 

    6. [6]

      Dong, S.; Zheng, B.; Xu, D.; Yan, X.; Zhang, M.; Huang, F. Adv. Mater. 2012, 24, 3191.

    7. [7]

      Dong, S.; Luo, Y.; Yan, X.; Zheng, B.; Ding, X.; Yu, Y.; Ma, Z.; Zhao, Q.; Huang, F. Angew. Chem. 2011, 123, 1945.

    8. [8]

       

    9. [9]

      Thorkelsson, K.; Bai, P.; Xu, T. Nano Today 2015, 10, 48.

    10. [10]

      Stupp, S. I.; Palmer, L. C. Chem. Mater. 2014, 26, 507. 

    11. [11]

      Chapman, R.; Danial, M.; Koh, M. L.; Jolliffe, K. A.; Perrier, S. Chem. Soc. Rev. 2012, 41, 6023. 

    12. [12]

      Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Chem. Rev. 2012, 112, 3959.

    13. [13]

      Liu, Y.; Goebl, J.; Yin, Y. Chem. Soc. Rev. 2013, 42, 2610. 

    14. [14]

      Yang, X.; Tang, H.; Cao, K.; Song, H.; Sheng, W.; Wu, Q. J. Mater. Chem. 2011, 21, 6122. 

    15. [15]

      Leenaars, A. F. M.; Keizer, K.; Burggraaf, A. J. J. Mater. Sci. 1984, 19, 1077. 

    16. [16]

       

    17. [17]

      Martin, C. R. Science 1994, 266, 1966. 

    18. [18]

      Steinhart, M.; Wendorff, J.; Greiner, A.; Wehrspohn, R.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U. Science 2002, 296, 1997.

    19. [19]

      Zhang, J.; Li, C. M. Chem. Soc. Rev. 2012, 41, 7016. 

    20. [20]

      Wei, Y.; Sun, D.; Yuan, D.; Liu, Y.; Zhao, Y.; Li, X.; Wang, S.; Dou, J. M.; Wang, X. P.; Hao, A. Y.; Sun, D. F. Chem. Sci. 2012, 3, 2282. 

    21. [21]

      Panda, T.; Kundu, T.; Banerjee, R. Chem. Commun. 2012, 48, 5464.

    22. [22]

      Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. Rev. 2005, 105, 1401.

    23. [23]

      Shimizu, T. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2601. 

    24. [24]

      Shimizu, T.; Minamikawa, H.; Kogiso, M.; Aoyagi, M.; Kameta, N.; Ding, W.; Masuda, M. Polym. J. 2014, 46, 858.

    25. [25]

      Kameta, N. J. Inclusion Phenom. Macrocyclic Chem. 2014, 79, 1. 

    26. [26]

      Kogiso, M.; Zhou, Y.; Shimizu, T. Adv. Mater. 2007, 19, 242.

    27. [27]

      Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813. 

    28. [28]

      Lee, J.; Kim, S. M.; Lee, I. S. Nano Today 2014, 9, 631. 

    29. [29]

    30. [30]

      Guix, M.; Mayorga-Martinez, C. C.; Merkoci, A. Chem. Rev. 2014, 114, 6285.

    31. [31]

      Mathews, A. S.; Kim, I.; Ha, C. S. Macromol. Res. 2007, 15, 114. 

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    12. [12]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    13. [13]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

Metrics
  • PDF Downloads(0)
  • Abstract views(1194)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return