Citation: Zhang Lixia, Du Xiufang, Zeng Ying. Chemistry in Separation and Enrichment of Glycoproteins/Glycopeptides[J]. Acta Chimica Sinica, ;2015, 74(2): 149-154. doi: 10.6023/A15090584 shu

Chemistry in Separation and Enrichment of Glycoproteins/Glycopeptides

  • Corresponding author: Zeng Ying, yingzeng@hunnu.edu.cn
  • Received Date: 5 September 2015

    Fund Project: the National Natural Science Fund of China No. 21205038the Natural Science Foundation of Hunan Province, China No.13JJ2022

Figures(5)

  • Glycoproteins play very important roles in many biological processes. The separation and enrichment of glycoproteins/glycopeptides is still considered a challenging task because of the low abundance and microheterogenity. This review introduces the chemistry method of separation and enrichment of glycoproteins and glycopeptides:hydrozide chemistry, amine chemistry, boronic acid chemistry, beta-elimination and Michael addition chemistry.
  • 加载中
    1. [1]

      Varki, A.; Sharon, N.Essential of Glycobiology, 2nd ed., Eds.: Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E., Cold Spring Harbor Laboratory Press, New York, 2009, p. 1.

    2. [2]

    3. [3]

      Kolli, V.; Schumacher, K. N.; Dodds, E. D. Bioanalysis 2015, 7, 113. 

    4. [4]

      Vosseller, K.; Trinidad, J. C.; Chalkley, R. J.; Specht, C. G.; Thalhammer, A.; Lynn, A. J.; Snedecor, J. O.; Guan, S.; Medzihradszky, K. F.; Maltby, D. A.; Schoepfer, R.; Burlingame, A. L. Mol. Cell. Proteomics 2006, 5, 923. 

    5. [5]

      Dai, Z.; Fan, J.; Liu, Y.; Zhou, J.; Bai, D.; Tan, C.; Guo, K.; Zhang, Y.; Zhao, Y.; Yang, P. Electrophoresis 2007, 28, 4382.

    6. [6]

      Qiu, R.; Regnier, F. E. Anal. Chem. 2005, 77, 2802. 

    7. [7]

      Yang, Z.; Hancock, W. S. J. Chromatogr. A 2004, 1053, 79. 

    8. [8]

      Comer, F. I.; Vosseller, K.; Wells, L.; Accavitti, M. A.; Hart, G. W. Anal. Biochem. 2001, 293, 169. 

    9. [9]

      Ball, L. E.; Berkaw, M. N.; Buse, M. G. Mol. Cell. Proteomics 2006, 5, 313.

    10. [10]

      Hagglund, P.; Bunkenborg, J.; Elortza, F.; Jensen, O. N.; Roepstorff, P. J. Proteome Res. 2004, 3, 556. 

    11. [11]

      Zhao, J.; Simeone, D. M.; Heidt, D.; Anderson, M. A.; Lubman, D. M. J. Proteome Res. 2006, 5, 1126.

    12. [12]

    13. [13]

      Liu, L.; Yu, M.; Zhang, Y.; Wang, C. C.; Lu, H. ACS Appl. Mater. Interfaces 2014, 6, 7823. 

    14. [14]

      Zhang, H.; Li, X.; Martin, D. B.; Aebersold, R. Nat. Biotechnol. 2003, 21, 660.

    15. [15]

      Klement, E.; Lipinszki, Z.; Kupihar, Z.; Udvardy, A.; Medzihradszky, K. F. J. Proteome Res. 2010, 9, 2200. 

    16. [16]

      Nilsson, J.; Ruetschi, U.; Halim, A.; Hesse, C.; Carlsohn, E.; Brinkmalm, G.; Larson, G. Nat. Methods 2009, 6, 809.

    17. [17]

      Zhang, Y.; Kuang, M.; Zhang, L.; Yang, P.; Lu, H. Anal. Chem. 2013, 85, 5535.

    18. [18]

      Zhang, Y.; Yu, M.; Zhang, C.; Ma, W.; Zhang, Y.; Wang, C.; Lu, H. Anal. Chem. 2014, 86, 7920.

    19. [19]

      Zhang, Y.; Yu, M.; Zhang, C.; Wang, Y.; Di, Y.; Wang, C.; Lu, H. Chem. Commun. 2015, 51, 5982.

    20. [20]

      Xu, Y.; Bailey, U. M.; Punyadeera, C.; Schulz, B. L. Rapid Commun. Mass Spectrom. 2014, 28, 471. 

    21. [21]

       

    22. [22]

      Liu, J.; Qu, Y.; Yang, K.; Wu, Q.; Shan, Y.; Zhang, L.; Liang, Z.; Zhang, Y. ACS Appl. Mater. Interfaces 2014, 6, 2059. 

    23. [23]

      Liu, J.; Yang, K.; Qu, Y.; Li, S.; Wu, Q.; Liang, Z.; Zhang, L.; Zhang, Y. Chem. Commun. 2015, 51, 3896.

    24. [24]

      Zhang, J.; Ni, Y. L.; Zheng, X. L. J. Sep. Sci. 2015, 38, 81. 

    25. [25]

      Zhang, X.; He, X.; Chen, L.; Zhang, Y. J. Mater. Chem. 2012, 22, 16520. 

    26. [26]

      Zhang, X.; He, X.; Chen, L.; Zhang, Y. J. Mater. Chem. B 2014, 2, 3254. 

    27. [27]

      Sparbier, K.; Wenzel, T.; Kostrzewa, M. J. Chromatogr. B,Anal. Technol. Biomed. Life Sci. 2006, 840, 29. 

    28. [28]

      Wells, L.; Vosseller, K.; Cole, R. N.; Cronshaw, J. M.; Matunis, M. J.; Hart, G. W. Mol. Cell. Proteomics 2002, 1, 791. 

    29. [29]

      Zheng, Y.; Guo, Z.; Cai, Z. Talanta 2009, 78, 358.

    30. [30]

      Sun, B.; Ranish, J. A.; Utleg, G. A.; White, T. J.; Yan, X.; Lin, B.; Hood, L. Mol. Cell. Proteomics 2007, 6, 141.

    31. [31]

      Liu, T.; Qian, W. J.; Gritsenko, M. A.; Xiao, W.; Moldawer, L. L.; Kaushal, A.; Monroe, M. E.; Varnum, S. M.; Moore, R. J.; Purvine, O. S.; Maier, V. R.; Davis, W. R.; Tompkins, R. G.; Camp II, D. G.; Smith, R. D. Mol. Cell. Proteomics 2006, 5, 1899. 

    32. [32]

      Pan, S.; Wang, Y.; Quinn, J. F.; Peskind, E. R.; Waichunas, D.; Wimberger, J. T.; Jin, J.; Li, J. G.; Zhu, D.; Pan, C.; Zhang, J. J. Proteome Res. 2006, 5, 2769. 

    33. [33]

      Monzo, A.; Olajos, M.; Benedictis, L. D.; Rivera, Z.; Bonn, G. K.; Guttman, A. Anal. Bioanal. Chem. 2008, 392, 195. 

    34. [34]

      Kubota, K.; Sato, Y.; Suzuki, Y.; Goto-Inoue, N.; Toda, T.; Suzuki, M.; Hisanaga, S.; Suzuki, A.; Endo, T. Anal. Chem. 2008, 80, 3693.

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(0)
  • Abstract views(2476)
  • HTML views(821)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return