Citation: Huang Qingming, Yu Han, Zhang Xinqi, Cao Wenbing, Yu Jianchang. Upconversion Performance Enhancement of NaYF4:Yb/Tm by Codoping Hf4+ as Energy Migrator[J]. Acta Chimica Sinica, ;2015, 74(2): 191-198. doi: 10.6023/A15040257 shu

Upconversion Performance Enhancement of NaYF4:Yb/Tm by Codoping Hf4+ as Energy Migrator

  • Corresponding author: Yu Jianchang, jcyu@fzu.edu.cn
  • Received Date: 14 April 2015

    Fund Project: the Natural Science Fund of Fujian Province No. 2013J05027

Figures(6)

  • In this paper we report the infrared to visible upconversion(UC) luminescence properties of Hf4+ and Zr4+ codoped NaYF4:Yb3+/Tm3+. Samples were synthesised by hydrothermal method. Concentration of Tm3+ and Yb3+ ions were fixed to be 2 mol% and 5 mol% for all samples, respectively. NaY0.93-xYb0.05Tm0.02F4 was tridoped with 0, 2, 4, 6, 8 mol% Hf4+ or Zr4+ and corresponding samples were named as Hf0, Hf2, Hf4, Hf6, Hf8 and Zr0, Zr2, Zr4, Zr6, Zr8, respectively. In a typical procedure, trivalent nitrate stock solutions of 0.2 mol/L were prepared at first by dissolving the corresponding metal oxide in concentrated nitric acid or hydrofluoric acid at elevated temperatures. And then, a certain mole percentage of trivalent nitrate solutions were added into 20 mL 0.04 mmol EDTA aqueous solution. After vigorous stirring for 30 min, 25 mL ethanol solution containing 0.2 mmol NaF, 0.2 mmol NH4HF2 and corresponding stoichiometric amount Hf4+ or Zr4+ were dropwise added into the solution, and then pH value of solution was adjusted to 3.0 by addition 1 mol/L HF, and stirring continued for 30 min. Then the emulsion mixture was moved to PTFE-lined high pressure pot and incubated in oven at 180℃ for 12 h. The final products were collected, washed several times with water and ethanol alternately, and gathered by centrifugation, and then dried in oven at 60℃. Crystal microstructure, morphology and UC luminescence properties of samples were investigated by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and upconversion photoluminescence spectra. Results revealed the bond distance of F1-Y and F2-Y become close with the rising of Hf4+ or Zr4+ codoped concentration, indicating crystal field asymmetry of rare earth ions were tuned effectively by Hf4+ or Zr4+ codoping. Electron hypersensitive transition was promoted, and the intensity of 802 nm emission was enhanced obviously. Hf4+ ion was a better dopant than Zr4+, for the extranuclear electronic structure of Hf4+ was the same with rare earth ions, and Hf4+ ion was involved in UC process as a migrator to improve Tm3+ upper state levels'population. UC luminescence of Hf4+ codoped sample were enhanced obviously, especially the shortwave emissions. The reported work establishes the understanding of Hf4+ as a migrator for Tm3+ ions upconversion luminescence, which may be helpful for design and synthesis of high-performance upconversion materials.
  • 加载中
    1. [1]

      Cates, E. L.; Chinnapongse, S. L.; Kim, J. H. Environ. Sci. Technol. 2012, 46(22), 12316. 

    2. [2]

      Li, C. X.; Lin, J. J. Mater. Chem.2010, 20(33), 6831. 

    3. [3]

      Feng, W.; Han, C.; Li, F. Adv. Mater. 2013, 25(37), 5287.

    4. [4]

      Buenzli, J.-C. G.; Eliseeva, S. V. J. Rare Earths 2010, 28(6), 824. 

    5. [5]

      Zhou, L.; Li, Z.; Liu, Z.; Yin, M.; Ren, J.; Qu, X. Nanoscale 2014, 6(3), 1445.

    6. [6]

      Lin, M.; Zhao, Y.; Wang, S. Q.; Liu, M.; Duan, Z. F.; Chen, Y. M.; Li, F.; Xu, F.; Lu, T. J. Biotechnol. Adv. 2012, 30(6), 1551. 

    7. [7]

      Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Analyst 2010, 135(8), 1839.

    8. [8]

      Chen, Z.; Wu, X.; Hu, S.; Hu, P.; Yan, H.; Tang, Z.; Liu, Y. J. Mater. Chem. C 2015, 3(1), 153. 

    9. [9]

      Min, Y.; Li, J.; Liu, F.; Padmanabhan, P.; Yeow, E. K. L.; Xing, B. Nanomaterials 2014, 4(1), 129. 

    10. [10]

      Ni, D.; Bu, W.; Zhang, S.; Zheng, X.; Li, M.; Xing, H.; Xiao, Q.; Liu, Y.; Hua, Y.; Zhou, L.; Peng, W.; Zhao, K.; Shi, J. Adv. Funct. Mater. 2014, 24(42), 6613. 

    11. [11]

      Yang, D.; Kang, X.; Ma, P. a.; Dai, Y.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J. Biomaterials 2013, 34(5), 1601.

    12. [12]

      Tian, G.; Gu, Z. J.; Liu, X. X.; Zhou, L. J.; Yin, W. Y.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J.; Zhao, Y. L. J. Phys. Chem. C 2011, 115(48), 23790. 

    13. [13]

      Park, Y.; Kim, H. M.; Kim, J. H.; Moon, K. C.; Yoo, B.; Lee, K. T.; Lee, N.; Choi, Y.; Park, W.; Ling, D.; Na, K.; Moon, W. K.; Choi, S. H.; Park, H. S.; Yoon, S. Y.; Suh, Y. D.; Lee, S. H.; Hyeon, T. Adv. Mater. 2012, 24(42), 5755.

    14. [14]

      Vetrone, F.; Naccache, R.; Zamarron, A.; de la Fuente, A. J.; Sanz-Rodriguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Sole, J. G.; Capobianco, J. A. ACS Nano 2010, 4(6), 3254. 

    15. [15]

      Shaoshuai, Z.; Kaimo, D.; Xiantao, W.; Guicheng, J.; Changkui, D.; Yonghu, C.; Min, Y. Opt. Commun. 2013, 291, 138.

    16. [16]

      Wang, W.; Ding, M.; Lu, C.; Ni, Y.; Xu, Z. Appl. Catal. B-Environ. 2014, 144, 379. 

    17. [17]

      Fix, T.; Ferblantier, G.; Rinnert, H.; Slaoui, A. Sol. Energy Mater. Sol. Cells 2015, 132, 191. 

    18. [18]

      Huang, X.; Han, S.; Huang, W.; Liu, X. Chem. Soc. Rev. 2013, 42(1), 173. 

    19. [19]

      Khan, A. F.; Yadav, R.; Mukhopadhya, P. K.; Singh, S.; Dwivedi, C.; Dutta, V.; Chawla, S. J. Nanopart. Res. 2011, 13(12), 6837. 

    20. [20]

      Gao, D.; Zhang, X.; Zheng, H.; Shi, P.; Li, L.; Ling, Y. Dalton Trans. 2013, 42(5), 1834.

    21. [21]

      Zhang, H. B.; Bu, Y. Y.; Yang, X. L.; Xiao, S. G.; Ding, J. W. Mater. Sci. Eng. B-Adv. 2011, 176(3), 256. 

    22. [22]

      Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Nat. Mater. 2011, 10(12), 968.

    23. [23]

      Zhao, J. Z.; Ji, S. M.; Guo, H. M. RSC Adv. 2011, 1(6), 937. 

    24. [24]

       

    25. [25]

      Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Nat. Mater. 2011, 10(12), 968. 

    26. [26]

      Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. Adv. Funct. Mater. 2009, 19(18), 2924. 

    27. [27]

      Su, Q. Q.; Han, S. Y.; Xie, X. J.; Zhu, H. M.; Chen, H. Y.; Chen, C. K.; Liu, R. S.; Chen, X. Y.; Wang, F.; Liu, X. G. J. Am. Chem. Soc. 2012, 134(51), 20849. 

    28. [28]

      Luo, Q.; Chen, Y.; Li, Z.; Zhu, F.; Chen, X.; Sun, Z.; Wei, Y.; Guo, H.; Wang, Z. B.; Huang, S. Nanotechnology 2014, 25(18), 185401. 

    29. [29]

      Cheng, Q.; Sui, J. H.; Cai, W. Nanoscale 2012, 4(3), 779. 

    30. [30]

       

    31. [31]

      Chen, D. Q.; Yu, Y. L.; Huang, F.; Huang, P.; Yang, A. P.; Wang, Y. S. J. Am. Chem. Soc. 2010, 132(29), 9976. 

    32. [32]

      Tian, G.; Gu, Z. J.; Zhou, L. J.; Yin, W. Y.; Liu, X. X.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J.; Zhao, Y. L. Adv. Mater. 2012, 24(9), 1226. 

    33. [33]

      Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Nature 2010, 463(7284), 1061. 

    34. [34]

      Richardson, F. S. Inorg. Chem.1980, 19(9), 2806. 

    35. [35]

      Huang, Q.; Yu, H.; Ma, E.; Zhang, X.; Cao, W.; Yang, C.; Yu, J. Inorg. Chem. 2015, 54(6), 2643.

    36. [36]

      Judd, B. R. Phys. Rev. 1962, 127, 750. 

    37. [37]

      Ofelt, G. S. J. Chem. Phys. 1962, 37, 511. 

    38. [38]

      Huang, Q.; Yu, J.; Ma, E.; Lin, K. J. Phys. Chem. C 2010, 114(10), 4719. 

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(1153)
  • HTML views(280)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return