Citation: ZHENG Hua-Yan, GUO Tian-Yu, LI Zhong, MENG Fan-Hui, QIN Yao. Effect of Impregnation Strategy on Structure and Catalytic Performance of CuCe/AC Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(12): 2575-2581. doi: 10.3969/j.issn.1001-4861.2013.00.388 shu

Effect of Impregnation Strategy on Structure and Catalytic Performance of CuCe/AC Catalyst

  • Received Date: 18 March 2013
    Available Online: 24 June 2013

    Fund Project: 国家自然科学基金(No.20976113,21276169) (No.20976113,21276169)山西省科技攻关项目(20120321003-03) (20120321003-03)山西省归国留学基金(No.20100038)资助项目。 (No.20100038)

  • The effect of impregnation sequence on the surface structure and catalytic performance of CuCe/AC (Activated carbon) (by adding rare earth Ce promoter to Cu/AC) catalyst was studied for gas-phase oxidative carbonylation of methanol to dimethyl carbonate. The active component content, surface dispersion and valence state of as-prepared catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction(H2-TPR), High resolution transmission electron microscope (HR-TEM). The results show that Ce promoter plays a key role for active component Cu to disperse on the surface of activated carbon in CuCe/AC catalyst prepared by co-impregnation. The Cu components are difficult to be reduced and difficult to contact with reactant molecules for CuCe/AC catalyst prepared by first impregnation with Cu and then with Ce because part of Cu components are covered by Ce impregnation leading to the decrease of catalytic activity. For CuCe/AC catalyst prepared by first impregnation with Ce and then with Cu, the Ce and Cu components interact with each other, resulting in an optimal catalytic performance because of a more uniform dispersion of Cu (0) and Cu(Ⅰ) species on the surface of the catalyst. The space time yield and selectivity of dimethyl carbonate are 142 mg·g-1·h-1 and 85%, respectively.
  • 加载中
    1. [1]

      [1] Keller N, Rebmann G, Keller V. J. Mol. Catal. A Chem., 2010, 317 (1/2):1-18

    2. [2]

      [2] Jiang R, Wang Y, Zhao X, et al. J. Mol. Catal. A Chem., 2002, 185 (1/2):/159-166

    3. [3]

      [3] King S T. Catal. Today, 1997, 33 (1/2/3):173-182

    4. [4]

      [4] Richter M, Fait M J G, Eckelt R, et al. J. Catal., 2007, 245 (1):11-24

    5. [5]

      [5] Wang Y J, Jiang R X, Zhao X Q, et al. J. Nat. Gas Chem., 2000, 9 (3):205-211

    6. [6]

      [6] LI Zhong (李忠), ZHU Qiong-Fang (朱琼芳), WANG Rui-Yu (王瑞玉), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011, 27 (4):718-724

    7. [7]

      [7] LI Zhong (李忠), NIU Yan-Yan (牛燕燕), ZHENG Hua-Yan (郑华艳), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011, 27 (7):1277-1284

    8. [8]

      [8] LI Zhong (李忠), WEN Chun-Mei (文春梅), ZHENG Hua-Yan (郑华艳), et al. Chem. J. Chinese Universities (Gaodeng Xuexiao Huaxue Xuebao), 2010, 31 (1):145-152

    9. [9]

      [9] LI Zhong (李忠), WEN Chun-Mei (文春梅), WANG Rui-Yu (王瑞玉), et al. Chem. J. Chinese Universities (Gaodeng Xuexiao Huaxue Xuebao), 2009, 30 (10):2024-2031

    10. [10]

      [10] Zou H, Dong X, Lin W. Appl. Surf. Sci., 2006, 253 (5):2893-2898

    11. [11]

      [11] Qi L, Yu Q, Dai Y, et al. Appl. Catal. B: Environ., 2012, 119-120:308-320

    12. [12]

      [12] Liu Z G, Zhou R X, Zheng X M. J. Nat. Gas Chem., 2008, 17 (2):125-129

    13. [13]

      [13] Jiang X Y, Lou L P, Chen Y X, et al. J. Mol. Catal. A Chem., 2003, 197 (1/2):193-205

    14. [14]

      [14] LI Zhong (李忠), ZHENG Hua-Yan (郑华艳), XIE Ke-Chang (谢克昌). Chin. J. Catal. (Cuihua Xuebao), 2008, 29 (5): 431-435

    15. [15]

      [15] Shishido T, Yamamoto M, Li D, et al. Appl. Catal. A: Gen., 2006, 303 (1):62-71

    16. [16]

      [16] Beck D D, Capehart T W, Hoffman R W. Chem. Phys. Lett., 1989, 159 (2/3):205-213

    17. [17]

      [17] Luo M F, Fang P, He M, et al. J. Mol. Catal. A: Chem., 2005, 239 (1/2):243-248

    18. [18]

      [18] Jung C R, Kundu A, Nam S W, et al. Appl. Catal. B: Environ., 2008, 84 (3/4):426-432

    19. [19]

      [19] XIE You-Chang (谢有畅), ZHANG Jia-Ping (张佳平), ZHANG Xian-Zhong (童显忠), et al. Chem. J. Chinese Universities (Gaodeng Xuexiao Huaxue Xuebao), 1997, 18 (7): 1159-1165

    20. [20]

      [20] Idem R O, Bakhshi N N. Chem. Eng. Sci., 1996, 51 (14): 3697-3708

    21. [21]

      [21] ZHANG Ri-Guang (章日光), ZHENG Hua-Yan (郑华艳), WANG Bao-Jun (王宝俊), et al. Chem. J. Chinese Universities (Gaodeng Xuexiao Huaxue Xuebao), 2010, 31 (6):1246-1251

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(0)
  • Abstract views(405)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return