Citation: ZHAO Chun-Rong, YANG Juan-Yu, LU Shi-Gang. Preparation of SiC Nanowires by Direct Electro-reduction of SiO2/C Pellets in Molten Salt[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(12): 2543-2548. doi: 10.3969/j.issn.1001-4861.2013.00.371 shu

Preparation of SiC Nanowires by Direct Electro-reduction of SiO2/C Pellets in Molten Salt

  • Received Date: 23 April 2013
    Available Online: 15 July 2013

    Fund Project: 国家863计划(No.2012AA110102)国家自然科学基金(No.51004016)资助项目。 (No.2012AA110102)国家自然科学基金(No.51004016)

  • Silicon carbide nanowires were synthesized by mixing formaldehyde resin carbon and nanometer silicon dioxide (atomic Si/C ratio, 1∶1) under cell voltage of 2.0 V in molten CaCl2 at 900 ℃. The morphology, structure and chemical composition of the samples prepared by electro-reduction method were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electronic microscope (TEM), High-resolution transmission electron microscopy (HRTEM) coupled with electron energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and laser Raman spectroscopy. The results reveal that silicon carbide nanowires are crystalline with a cube structure, the diameter is distributed from 4 nm to 13 nm and the length is generally several micrometers. Two broad photoluminescence (PL) peaks at the center wavelength of about 415 nm and 534 nm were observed at room temperature. The formation mechanism of the SiC nanowires is also discussed.
  • 加载中
    1. [1]

      [1] Xu S J, Qiao G J, Wang H J, et al. Mater. Lett., 2008, 62: 4549-4551

    2. [2]

      [2] Yang W, Araki H, Hu Q L, et al. J. Crys. Growth, 2004, 264: 278-283

    3. [3]

      [3] HAO Ya-Juan (郝雅娟), JIN Gou-Qiang (靳国强), GUO Xiang-Yun (郭向云). Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2006, 22 (10):1833-1837

    4. [4]

      [4] Chen J J, Shi Q, Xin L P, et al. J. Alloys and Compounds, 2011, 509:6844-6847

    5. [5]

      [5] Han W Q, Fan S S, Li Q Q, et al. Chem. Phys. Lett., 1997, 265:374-378

    6. [6]

      [6] Pan Z W, Lai H L, Au F C K, et al. Adv. Mater., 2000, 12 (16):1186-1190

    7. [7]

      [7] Pol V G, Pol S V, Gedanken A, et al. J. Phys. Chem. B, 2006, 110:11237-11240

    8. [8]

      [8] Zhao D L, Fa L, Zhou W C. J. Alloys Compd., 2010, 490 (1/2): 190-194

    9. [9]

      [9] Shi W S, Zheng Y F, Peng H Y, et al. J. Am. Cream. Soc., 2000, 83 (12):3228-3230

    10. [10]

      [10] Liu X M, Yao K F. Nanotechnology., 2005, 16:2932-2935

    11. [11]

      [11] Zhang H F, Wang C M, Wang L S. Nano Lett., 2002, 2 (9): 941-944

    12. [12]

      [12] Wu R B, Zha B L, Wang L Y, et al. Phys. Status Solidi A, 2012, 209 (3):553-558

    13. [13]

      [13] Dai H, Wong E W, Lu Y Z, et al. Natrue, 1995, 375:769-772

    14. [14]

      [14] Meng G W, Cui Z, Zhang L D, et al. J. Crys. Growth, 2000, 209:801-806

    15. [15]

      [15] Chen G Z, Fray D J, Farthing T W. Natrue, 2000, 407:361-364

    16. [16]

      [16] Wang D H, Jin X B, Chen G Z, et al. Prog. Chem., Sect. C, 2008, 104:189-234

    17. [17]

      [17] Jin X B, Gao P, Wang D H, et al. Angew. Chem. Int. Ed., 2004, 43:733-736

    18. [18]

      [18] LIU Ming-Feng (刘美凤), LU Shi-Gang (卢世刚), KAN Su-Rong (阚素荣). Chinese Journal of Rare Metals (Xiyou Jinshu), 2008, 32 (5):668-673

    19. [19]

      [19] YANG Juan-Yu (杨娟玉), LU Shi-Gang (卢世刚), KAN Su-Rong (阚素荣), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009, 25 (4):756-760

    20. [20]

      [20] Yang J Y, Lu S G, Kan S R, et al. Chem. Commun., 2009: 3273-3275

    21. [21]

      [21] Nishmura Y, Nohira T, Kobayashi K, et al. J. Electrochem. Soc., 2011, 158 (6):E55-E59

    22. [22]

      [22] Wu R B, Yang G Y, Gao M X, et al. Cryst. Growth Des., 2009, 9:100-105

    23. [23]

      [23] MENG A-Lan (孟阿兰), LI Zhen-Jiang (李镇江), ZHANG Can-Ying (张灿英), et al. Rare Metal Materials and Engineering (Xiyou Jinshu Cailiao Yu Gongcheng), 2005, 34:11-14

    24. [24]

      [24] Bechelany M, Brioude S, Cornu D, et al. Adv. Funct. Mater., 2007, 17:939-943

    25. [25]

      [25] YANG Xiu-Chun (杨修春), HAN Gao-Rong (韩高荣), ZHANG Xiao-Bin (张孝彬), et al. Chnese J. Semiconductors (Bandaoti Xuebao), 1998, 19 (6):423-426

    26. [26]

      [26] YANG Juan-Yu (杨娟玉), LU Shi-gang (卢世刚), DING Hai-Yang (丁海洋), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010, 26 (10):1837-1843

    27. [27]

      [27] Nohira T, Kasuda Y, Ito Y. Nat. Mater., 2003, 2:397-401

  • 加载中
    1. [1]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    19. [19]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(0)
  • Abstract views(336)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return