Citation: ZHOU Li-Na, CHEN Yao-Qiang, REN Cheng-Jun, GONG Mao-Chu. Pd/MnOx+Pd/γ-Al2O3 Monolith Catalysts for Ground-Level Ozone Decomposition[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2363-2369. doi: 10.3969/j.issn.1001-4861.2013.00.357 shu

Pd/MnOx+Pd/γ-Al2O3 Monolith Catalysts for Ground-Level Ozone Decomposition

  • Received Date: 25 February 2013
    Available Online: 14 June 2013

    Fund Project: 四川大学化学学院基地能力提高项目基金(No.J1103315)资助项目。 (No.J1103315)

  • Ahighly active MnOx materials were prepared by an oxidation-reduction reaction between KMnO4 and Mn(NO3)2. The γ-Al2O3 support with large surface area was synthesized by the peptizing method. Subsequently, Pd was loaded on MnOx and γ-Al2O3 by incipient wetness impregnation, respectively. Then, the Pd/MnOx and Pd/γ-Al2O3 were mixed and coated on the cordierite. Finally, the Pd/MnOx+Pd/γ-Al2O3 monolithic catalysts were obtained. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Temperature-programmed reduction (H2-TPR) and low temperature N2 adsorption/desorption measurement, respectively. Asynergetic effect took place between Pd and MnOx when O3 was decomposed on the surface of the Pd/MnOx+Pd/γ-Al2O3 catalysts. The effect of calcination temperature on the catalytic performance for the decomposition of ground-level ozone was investigated. It revealed that the activity of catalysts was considerably influenced by the calcination temperature of MnOx. When the MnOx was calcined at 600 ℃, the catalyst had the highest activity, where ozone conversion reached 88% at 12 ℃ and it was completely decomposed at 18 ℃. The results show that catalytic activity mainly depends on the MnOx phase and oxygen species adsorbed on the surface of catalysts. The MnO2 and Mn2O3 with proper proportion can efficiently promote the decomposition of ozone. And oxygen adsorbed on the surface of catalysts is active oxygen species during ozone decomposition.
  • 加载中
    1. [1]

      [1] Dhandapani B, Oyama S T. Appl. Catal. B, 1997,11(2):129-166

    2. [2]

      [2] CHEN Ye-Pu(陈烨璞), JIANG Ai-Li(蒋爱丽), TAN Gui-Xia (谭桂霞), et al. Industrial Catal. (Gongye Cuihua), 2006,14 (5):52-55

    3. [3]

      [3] FU Jia-Yuan(傅嘉媛), FENG Yi-Jun(冯易君), ZHONG Bing (钟兵), et al. Sichuan Environ. (Sichuan Huanjing), 2001,20 (3):10-14

    4. [4]

      [4] LI Wei(李 伟), SUN De-Zhi(孙德智), LIU Chang-An (刘长安), et al. J. Harbin Institute Technol. (Harbing Gongye Daxue Xuebao), 2004,36(5):624-627

    5. [5]

      [5] Wu M C, Kelly N A. Appl. Catal. B., 1998,18(1/2):79-91

    6. [6]

      [6] Terui S, Yokota Y. US Patent, 5187137. 1993-02-16

    7. [7]

      [7] Kameya T, Urano K. J. Environ. Eng. 2002,128(3):286-292

    8. [8]

      [8] Zhang X, Zhang F, Chan K Y. Mater. Lett., 2004,58(22/23): 2872-2877

    9. [9]

      [9] Kitaguchi S, Terui S, et al. US Patent, 5296435.1994-03-22

    10. [10]

      [10]YAO Yan-Ling(姚艳玲), FANG Rui-Mei(方瑞梅), SHI Zhong-Hua(史忠华), et al. Chin. J. Catal. (Cuihua Xuebao), 2011,32(4):589-594

    11. [11]

      [11]Rezaei E, Soltan J, Chen N, et al. Chem. Eng. J., 2013,214: 219-228

    12. [12]

      [12]Xu G P, Zhu Y X, Ma J, et al. Stud. Surf. Sci. Catal., 1997,112:333-338

    13. [13]

      [13]YU Quan-Wei(余全伟), ZHAO Ming(赵 明), LIU Zhi-Ming (刘志敏), et al. Chin. J. Catal. (Cuihua Xuebao), 2009,30 (1):1-3

    14. [14]

      [14]Fu X B, Feng J Y, Wang H, et al. Catal. Commun., 2009,10 (14):1844-1848

    15. [15]

      [15]Berbenni V, Marini A. Mater. Res. Bull., 2003,38(14):1859-1866

    16. [16]

      [16]Einaga H, Harada M, Futamura S. Chem. Phys. Lett., 2005, 408(4/5/6):377-380

    17. [17]

      [17]Santos V P, Pereira M F R, Órfǎo J J M, et al. Appl. Catal. B, 2010,99:353-363

    18. [18]

      [18]Wei Y J, Yan L Y, Wang C Z, et al. J. Phys. Chem. B, 2004,108(48):18547-18551

    19. [19]

      [19]Ardizzone S, Bianchi C L, Tirelli D. Colloids. Surf. A, 1998, 134(3):305-312

    20. [20]

      [20]Thota S, Prasad B, Kumar J. Mater. Sci. Eng. B, 2010,167 (3):153-160

    21. [21]

      [21]Chen H Y, Sayari A, Adnot A, et al. Appl. Catal. B, 2001,32:195-204

    22. [22]

      [22]Bulanin K M, Lavalley J C, Tsyganenko A A. Colloid Surface A, 1995,101(2/3):153-158

    23. [23]

      [23]Li W, Oyama T. J. Am. Chem. Soc., 1998,120(35):9047-9052

  • 加载中
    1. [1]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(314)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return