Citation: LIN Xue, YU Li-Li, YAN Li-Na, YAN Yong-Sheng, GUAN Qing-Feng, ZHAO Han. Controllable Synthesis and Photocatalytic Activity of Layered, Flowerlike, and Rodlike Bismuth Titanate Nanostructures[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2415-2421. doi: 10.3969/j.issn.1001-4861.2013.00.346 shu

Controllable Synthesis and Photocatalytic Activity of Layered, Flowerlike, and Rodlike Bismuth Titanate Nanostructures

  • Received Date: 31 January 2013
    Available Online: 28 May 2013

    Fund Project: 环境友好材料制备与应用教育部重点实验室项目和吉林省科技发展计划项目(20130522071JH)资助项目。 (20130522071JH)

  • Layered, flowerlike, and rodlike bismuth titanate (Bi4Ti3O12, BIT) nanostructures were synthesized via the controllable hydrothermal method. The phase structures and morphologies were measured by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). XRD patterns demonstrate that the as-prepared samples are of layered-perovskite structure. FESEM shows that BITcrystals can be fabricated in different morphologies by simply manipulating the reaction parameters of hydrothermal process. The UV-Vis diffuse reflectance spectra (UV-Vis DRS) reveal that the band gaps of BIT photocatalysts are 2.63~2.95 eV. The as-prepared BIT photocatalysts exhibit higher photocatalytic activities in the degradation of methyl orange (MO) under visible light irradiation (λ>420 nm) compared with traditional N-doped TiO2 (N-TiO2). Layered BIT nanostructures show the highest photocatalytic activity. Up to 95.0% MO is decolorized after visible light irradiation for 360 min. In addition, the reason for the difference in the photocatalytic activities obtained at different conditions was studied based on the structures and morphologies.
  • 加载中
    1. [1]

      [1] Wang S L, Li P G, Zhu H W, et al. Powder Technol., 2012, 230:48-53

    2. [2]

      [2] Tian G H, Jing L Q, Fu H G, et al. J. Hazard. Mater., 2009, 161:1122-1130

    3. [3]

      [3] Chen F, Zou W W, Qu W W, et al. Catal. Commun., 2009, 10:1510-1513

    4. [4]

      [4] LI Li(李丽), YANG He-Qing(杨合情), MA Jun-Hu(马军虎), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012, 28(1):25-29

    5. [5]

      [5] YAN Ya(严亚), LÜYing(吕瑛), XIA Yi(夏怡), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(10):1999-2004

    6. [6]

      [6] YU Chang-Lin(余长林), ZHOU Wan-Qin(周晚琴), YU Jimmy C. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27 (10):2033-2038

    7. [7]

      [7] Tahir Asif Ali, Upul Wijayantha K G. J Photoch. Photobio. A: Chem., 2010,216:119-125

    8. [8]

      [8] SONG Li-Hua(宋丽花), TAN Guo-Qiang(谈国强), XIA Ao (夏傲), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(11):2133-2137

    9. [9]

      [9] Zhang L W, Wang Y J, Cheng H Y, et al. Adv. Mater., 2009,21:1286-1290

    10. [10]

      [10]Tian G H, Chen Y J, Meng X Y, et al. ChemPlusChem, 2013,78:117-123

    11. [11]

      [11]Liu Y Y, Huang B B, Dai Y, et al. Catal. Commun., 2009, 11:210-213

    12. [12]

      [12]Zhang Z J, Wang W Z, Shang M, et al. Catal. Commun., 2010,11:982-986

    13. [13]

      [13]Hou J G, Cao R, Jiao S Q, et al. Appl. Catal. B: Environ., 2011,104:399-406

    14. [14]

      [14]Zhang L, Cao X F, Chen X T, et al. J. Colloid Interf. Sci., 2011,354:630-636

    15. [15]

      [15]Luan J F, Hao X P, Zheng S R, et al. J. Mater. Sci., 2006, 41:8001-8012

    16. [16]

      [16]Yao W F, Xu X H, Wang H, et al. Appl. Catal. B: Environ., 2004,52:109-116

    17. [17]

      [17]Yao W F, Wang H, Xu X H, et al. Mater. Lett., 2003,57: 1899-1902

    18. [18]

      [18]Wang Z Z, Qi Y J, Qi H Y, et al. J. Mater. Sci.: Mater. Electron., 2010,21:523-528

    19. [19]

      [19]Buscaglia M T, Sennour M, Buscaglia V, et al. Cryst. Growth Des., 2011,11:1394-1401

    20. [20]

      [20]Chen X H, J Q Hu, Chen Z W, et al. Biosens. Bioelectron., 2009,24:3448-3454

    21. [21]

      [21]Chen Z W, He X H. J. Alloys Compd., 2010,497:312-315

    22. [22]

      [22]Patwardhan J S, Rahaman M N. J. Mater. Sci., 2004,39:133-139

    23. [23]

      [23]Kudo A, Hijii S. Chem. Lett., 1999,28:1103-1104

    24. [24]

      [24]Lin X, Lü P, Guan Q F, et al. Appl. Surf. Sci., 2012,258: 7146-7153

    25. [25]

      [25]XU Di(许迪), GAO Ai-Mei(高爱梅), DENG Wen-Li(邓文礼), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2008,24 (7):1219-1224

    26. [26]

      [26]Zhu X Q, Zhang J L, Chen F. Chemosphere, 2010,78:1350-1355

    27. [27]

      [27]Oliveira R C, Cavalcante L S, Sczancoski J C, et al. J. Alloys Compd., 2009,478:661-670

    28. [28]

      [28]Zhang L W, Xu T G, Zhu Y F, et al. Appl. Catal. B: Environ., 2010,98:138-146

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(253)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return