Citation: JIANG Hong-Ji, MAO Bing-Xue. One-Pot Step Hydrothermal Synthesis of Nano-Composites Based on Graphene and CdSe Quantum Dots with Different Morphology[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2305-2314. doi: 10.3969/j.issn.1001-4861.2013.00.342 shu

One-Pot Step Hydrothermal Synthesis of Nano-Composites Based on Graphene and CdSe Quantum Dots with Different Morphology

  • Received Date: 6 March 2013
    Available Online: 21 May 2013

    Fund Project: 国家科技部重大基础研究计划(No.2009CB930600,2012CB933301) (No.2009CB930600,2012CB933301)“有机与生物光电子学”教育部创新团队(No.IRT1148) (No.IRT1148)

  • Graphene oxides and graphene by using redox method were synthesized and characterized. The properties of graphene obtained by chemical reduction method of NaBH4 and thermal reduction method in ethylene amine solvent were further compared. It was demonstrated that thermal reduction of graphene oxides in ethylene amine solvent could introduce nitrogen functional groups to the surface of obtained graphene, increase the distance between the film layers and enhance its dispersity. The results demonstrated that graphene oxides were reduced, CdSe quantum dots were loaded simultaneously, and oxygen content as significantly decreased. The change of reaction temperature showed little effects on the reduction of graphene oxides, and longer the reaction time, higher the reduction rate of graphene oxides. With the increase of reaction time, the CdSe quantum dots loaded on the surface of graphene grew into nanorods, nanowires, and even branch-shaped nano structures. By controlling the reaction time and temperature, we can easily control the reduction level of graphene oxides and the morphology of CdSe quantum dots supported on the surface of graphene. In conclusion, an effective method is established to control the properties and morphology of nano-composites based on graphene and CdSe quantum dots by hydro-thermal methods.
  • 加载中
    1. [1]

      [1] Chen J H, Jang C, Xiao S D, et al. Nat. Nanotechnol., 2008, 3:206-209

    2. [2]

      [2] Bolotin K I, Sikes K J, Jiang Z, et al. Solid. State. Commun., 2008,146:351-355

    3. [3]

      [3] Wang X S, Huang P, Feng L L, et al. Rsc. Adv., 2012,2: 3816-3822

    4. [4]

      [4] Balandin A A, Ghosh S, Bao W Z, et al. Nano Lett., 2008,8: 902-907

    5. [5]

      [5] Lee C, Wei X, Kysar J W, et al. Science, 2008,321:385-388

    6. [6]

      [6] Stoller M D, Park S J, Zhu Y, et al. Nano Lett., 2008,8: 3498-3502

    7. [7]

      [7] Schedin F, Geim A K, Morozov S V, et al. Nat. Mater., 2007,6:652-655

    8. [8]

      [8] Avouris P, Xia F N, Mueller T, et al. Nat. Nanotechnol., 2009,4:839-843

    9. [9]

      [9] Wang X R, Ouyang Y J, Li X L, et al. Phys. Rev. Lett., 2008,100:235-238

    10. [10]

      [10]Blake P, Brimicombe P D, Nair R R, et al. Nano Lett., 2008,8:1704-1708

    11. [11]

      [11]Xiang B, Wang P W, Zhang X Z, et al. Nano Lett., 2007,7: 323-328

    12. [12]

      [12]Berger C, Song Z M, Li X B, et al. Science, 2006,312:1191-1196

    13. [13]

      [13]Li X S, Cai W W, Colombo L, et al. Nano Lett., 2009,9: 4268-4272

    14. [14]

      [14]Brodie B C. Philos. Trans. R. Soc. London., 1859,149:249-259

    15. [15]

      [15]Hummer W S, Offeman R E. J. Am. Chem. Soc., 1958,80: 1339-1339

    16. [16]

      [16]Staudenmaier L. Ber D. Chem. Ges., 1898,31:1481-1487

    17. [17]

      [17]Ren P G, Yan D X, Ji X, et al. Nanotechnology, 2011,22: 055705.1-055705.8

    18. [18]

      [18]Nethravathi C, Rajamathi M. Carbon, 2008,46:1994-1998

    19. [19]

      [19]Sun H M, Cao L Y, Lu L H. Nano Res., 2011,4:550-562

    20. [20]

      [20]Dai Y Q, Jing Y, Zeng J, et al. J. Mater. Chem., 2011,21: 18174-18179

    21. [21]

      [21]Lu T, Pan L K, Nie C Y, et al. Physica. Status. Solidi. A, 2011,208:2325-2327

    22. [22]

      [22]Jarosz M V, Porter V J, Fisher B R, et al. Phys. Rev. B, 2004,70:195327.1-19537.12

    23. [23]

      [23]Luo Z, Somers L A, Dan Y, et al. Nano Lett., 2010,10:777-781

    24. [24]

      [24]Chen Z, Berciaud S, Nuckolls C, et al. ACS Nano, 2010,4: 2964-2968

    25. [25]

      [25]Kamat P V. J. Phys. Chem. Lett., 2010,1:520-527

    26. [26]

      [26]Williams G, Seger B, Kamat P V. ACS Nano, 2008,2:1487-1491

    27. [27]

      [27]Williams G, Seger B, Kamat P V. Langmuir, 2009,25:13869-13973

    28. [28]

      [28]Cao A, Liu Z, Chu S, et al. Adv. Mater., 2010,22:103-106

    29. [29]

      [29]Gur I, Fromer N A, Geier M L. Science, 2005,310:462-465

    30. [30]

      [30]Farrow B, Kamat P V. J. Am. Chem. Soc., 2009,131:11124-11131

    31. [31]

      [31]Lin Y, Zhang K, Chen W, et al. ACS Nano, 2010,4:3033-3038

    32. [32]

      [32]Abdallah F Z, Samay S, Sherif M, et al. J. Phys. Chem. C, 2010,114:19920-19927

    33. [33]

      [33]Geng X M, Niu L, Xing Z Y, et al. Adv. Mater., 2010,22: 638-642

    34. [34]

      [34]Oh W C, Chen M L, Cho K Y, et al. Chin. J. Catal., 2011, 32:1577-1583

    35. [35]

      [35]Chu J, Li X, Xu P. J. Mater. Chem., 2011,21:11283-11287

    36. [36]

      [36]Yanga D G, Velamakannia A, Bozoklub G, et al. J. Carbon, 2009,47:145-152

    37. [37]

      [37]Wang X S, Yang D P, Huang G S, et al. J. Mater. Chem., 2012,22:17441-17444

    38. [38]

      [38]Wang D B, Yu D B, Mo M S, et al. J. Cryst. Growth, 2003, 253:445-451

    39. [39]

      [39]Shama A Y W, Notley S M. Soft. Matter., 2013,9:6645-6653

    40. [40]

      [40]Li C, Shi G Q. Nanoscale, 2012,4:5549-5563

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    5. [5]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    6. [6]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    7. [7]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    8. [8]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    9. [9]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    12. [12]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    18. [18]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

Metrics
  • PDF Downloads(0)
  • Abstract views(311)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return