Citation: YANG Chao, LIU Jing-Song, ZHANG Min-Fang, YOU Mei-Rong. Effect of Sintering Temperature on B-Site Order of Pb(Mg1/3Nb2/3)O3-Based Ferroelectric Ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2145-2149. doi: 10.3969/j.issn.1001-4861.2013.00.334 shu

Effect of Sintering Temperature on B-Site Order of Pb(Mg1/3Nb2/3)O3-Based Ferroelectric Ceramics

  • Received Date: 19 March 2013
    Available Online: 16 May 2013

    Fund Project: 四川省教育厅青年基金(No.09ZB095)资助项目 (No.09ZB095)

  • The effect of CuOdoping on B-site order of 0.94Pb(Mg1/3Nb2/3)O3-0.06PbTiO3 (abbreviated as PMN-6PT) ceramics with different sintering temperatures was studied. The Raman and XRDresults revealed that under different sintering temperature, ion substitution was different, which had different influence to B-site order. Sintering temperature at 950 ℃, Cu2+ ions entered the crystal lattice and made no difference in the B-site order. However, Sintering temperature at 1080 ℃, Cu1+ ions entered the crystal lattice and had an effect in the B-site order. The dependence of dielectric constant on temperature illustrated an obvious relaxor characteristic for CuOdoped PMN-based ceramics, which was in accord with Raman spectra analysis.
  • 加载中
    1. [1]

      [1] CHEN Xue-Feng(陈学锋), LI Hua-Mei(李华梅), LI Dong-Jie (李东杰), et al. Acta Phy. Sin.(Wuli Xuebao), 2008,57(11): 7298-7303 [2] Haertling G H. J. Am. Ceram. Soc., 1999,82(4):797-818 [3] Swartz S L, Shrout T R, Schulze W A, et al. J. Am. Ceram. Soc., 1984,67(5):311-314 [4] Uchino K. Am. Ceram. Soc. Bull., 1986,65:647-652 [5] YAO Wen-Long(姚文龙), FENG Chu-De(冯楚德), YANG Yi (杨毅), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2002,17 (6):1181-1186 [6] Smolensky G A, Isupon V A, Agranaovska A I, et al. Soc. Phys. Solid. State., 1961,2(11):2584-2594 [7] Chen J, Chan H M, Harmer M P. J. Am. Ceram. Soc., 1989, 72(4):593-598 [8] Cross L E. Ferroelectrics, 1987,76(1):241-267 [9] Yao X, Chen Z L, Cross L E. J. Appl. Phys., 1983,54(6):3399 -3403 [10]Akbas M A, Davis P K. J. Am. Ceram. Soc., 1997,80(11): 2933-2936 [11]Fu M J, Kojima S, Zhao C, et al. Appl. Phys. Lett., 2001,79: 3938-3940 [12]Lin D, Kwok K W, Chan H L W. J. Appl. Phys., 2007,90: 232903 [13]Huang C L, Chiang K H. Mater. Res. Bull., 2004,39(11): 1701-1708 [14]Jo W, Ollagnier J B, Park J L, et al. J. Eur. Ceram. Soc., 2011,31(12):2107-2117 [15]Wang L, Mao C L, Wang G S, et al. J. Am. Ceram. Soc., 2013,96(1):24-27 [16]Swartz S L, Shrout T R. Mater. Res. Bull., 1982,17(10):1245 -1250 [17]Hoang N N, Huynh D C, Nguyen T T, et al. Appl. Phys. A, 2008,92:715-725 [18]Husson E, Abello L, Morell A. Mater. Res. Bull., 1990,25 (4):539-545 [19]Li T, Liu J, Li H, et al. J. Mater. Sci.: Mater. Electron., 2011, 22(8):1188-1194 [20]LI Xin-Yuan(李新元), FENG Chu-De(冯楚德), LI Cheng-En (李承恩), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 1998, 13(6):823- 829 [21]Bokov A A. Ferroelectrics, 1996,183(1):65-73 [22]ZHONG Wei-Lie(钟维烈). Ferroelectrics Physics(铁电体物 理学). Beijing: Science Press, 2000. [23]Set ter N, Cross L E. J. Mater. Sci, 1980,15(10):2478-2482 [24]QU Shao-Bo(屈绍波), YANG Zu-Pei(杨祖培), GAO Feng(高 峰), et al. J. Mater. Engin.(Cailiao Gongcheng), 2000,1:44- 48 [25]Mitoseriu L, Stancu A, Fedor C, et al. J. Appl. Phys., 2003, 94(3):1918-1925

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    8. [8]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    9. [9]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    10. [10]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    11. [11]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    12. [12]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    13. [13]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    16. [16]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    17. [17]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    20. [20]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

Metrics
  • PDF Downloads(0)
  • Abstract views(192)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return