Citation: YANG Jing, CUI Shi-Hai, LIAN Hong-Zhen. Preparation of Magnetical Photocatalyst Fe3O4/C/TiO2 for Degradation of2,4,6-Trichlorophenol in Aqueous Solution[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2043-2048. doi: 10.3969/j.issn.1001-4861.2013.00.332 shu

Preparation of Magnetical Photocatalyst Fe3O4/C/TiO2 for Degradation of2,4,6-Trichlorophenol in Aqueous Solution

  • Received Date: 27 March 2013
    Available Online: 17 May 2013

    Fund Project: 国家重点基础研究发展计划(973计划)(No.2009CB421601,2011CB911003) (973计划)(No.2009CB421601,2011CB911003)国家自然科学基金(No.21275069,21177061) (No.21275069,21177061)江苏省高校自然科学基金(No.11KJB150008)江苏高校优势学科建设工程资助项目。 (No.11KJB150008)

  • Aseparable magnetic photocatalyst (Fe3O4/C/TiO2) was prepared by a hydrothermal reaction with the reaction of FeCl3, glucose and tetrabutyltitanate. The catalyst Fe3O4/C/TiO2 was characterized in terms of particle size, morphology and phase by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectrometry, vibration sample magnetometry (VSM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The catalytic activities and mechanism were evaluated by degradation of 2,4,6-trichlorophenol (TCP) aqueous solution. The reaction mechanism was investigated by the fluorescence technique. The results indicate that the catalyst has high degradation abilities and can be easily separated and reused by an external magnetic field. TCPcan be effectively degraded by 97.9% in the use of 1 g·L-1 Fe3O4/C/TiO2 under 18 W UVlight within50 min. Adegradation rate of 95.1% can be maintained after 6 cycles. The hydroxyl radicals (OH) have been detected in the reaction.
  • 加载中
    1. [1]

      [1] Aranda C, Godoy F, Becerra J, et al. Biodegradation, 2003, 14:265-274 [2] Xun L, Webster C M. J. Biol. Chem, 2004,279:6696-6700 [3] Dionysiou D D, Khodadoust A P, Kern A M, et al. Appl. Catal. B, 2000,24:139-155 [4] Bandara J, Mielczarski J A, Lopez A, et al. Appl. Catal. B, 2001,34:321-333 [5] Shriwas A K, Gogate P R. Ind. Eng. Chem. Res., 2011,50: 9601-9608 [6] Ahuja D, Bachas L, Bhattacharyya D. Chemosphere, 2007, 66:2193-2200 [7] Li Y, Bachas L, Bhattacharyya D. Environ. Sci. Technol., 2005,22:756-771 [8] Graham N, Chu W, Lau C. Chemosphere, 2003,51:237-243 [9] Aal A, Mahmoud S, Aboul-Gheit A. Nanoscale Res. Lett., 2009,4:627-634 [10]Androulaki E, Hiskia A, Dimotikali D, et al. Environ. Sci. Technol., 2000,34:2024-2028 [11]Rengaraj S, Li X. J. Mol. Catal. A: Chem., 2006,243:60-67 [12]Vijayan P, Mahendiran C, Suresh C, et al. Catal. Today, 2009,141:220-224 [13]Wang Y, Zhang Y, Zhao G, et al. ACS Appl. Mater. Interfaces, 2012,4:3965-3972 [14]Beydoun D, Amal R. J. Phys. Chem. B, 2000,104:4387-4396 [15]Yu X, Liu S, Yu J. Appl. Catal. B, 2011,104:12-20 [16]Yuan Q, Li N, Geng W, et al. Mater. Res. Bull., 2012,47: 2396-2402 [17]WANG Zheng(王拯), ZHANG Feng-Bao(张风宝). Chinese J. Environ. Chem.(Huanjing Huaxue), 2008,27(3):283-287 [18]Shi F, Li Y, Zhang Q, et al. Int. J. Photoenergy, 2012,2012: 1-8 [19]BAO Shu-Juan(包淑娟), ZHANG Xiao-Gang(张校刚), LIU Xian-Ming(刘献明). J. Funct. Mater.(Gongneng Cailiao), 2004,1(35):108-113 [20]ZHANG Xiu-Ling(张秀玲), GAO Shuai(高帅), YUAN Xue- De(袁学德), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(11):1912-1916 [21]Wang Z F, Guo H S, Yu Y L et al. J. Magn. Magn. Mater., 2006,302:397-404 [22]Zhang S, Niu H, Hu Z, et al. J. Chromatogr. A, 2010,1217: 4757-4764 [23]Deng H, Li X, Peng Q, et al. Angew. Chem. Int. Ed., 2005, 44:2782-2785 [24]Zhang Z, Duan H, Li S, et al. Langmuir, 2010,26:6676-6680 [25]Xuan S, Jiang W, Gong X, et al. J. Phys. Chem. C, 2009, 113:553-558 [26]Vijayan P, Mahendiran C, Suresh C, et al. Catal. Today, 2009,141:220-224 [27]Xiang Q J, Yu J G, Wong P K. J. Colloid Interface Sci., 2011,357:163-167 [28]Nosaka Y, Komori S, Yawata K, et al. Phys. Chem. Chem. Phys., 2003,5:4731-4735 [29]Xiang Q, Yu J, Wang W, et al. Chem. Commun., 2011,47: 6906-6908 [30]Tsai C H, Stern A, Chiou J F. J. Agric. Food Chem., 2001, 49:2137-2141

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(0)
  • Abstract views(247)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return