Citation: YANG Jing, CUI Shi-Hai, LIAN Hong-Zhen. Preparation of Magnetical Photocatalyst Fe3O4/C/TiO2 for Degradation of2,4,6-Trichlorophenol in Aqueous Solution[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2043-2048. doi: 10.3969/j.issn.1001-4861.2013.00.332 shu

Preparation of Magnetical Photocatalyst Fe3O4/C/TiO2 for Degradation of2,4,6-Trichlorophenol in Aqueous Solution

  • Received Date: 27 March 2013
    Available Online: 17 May 2013

    Fund Project: 国家重点基础研究发展计划(973计划)(No.2009CB421601,2011CB911003) (973计划)(No.2009CB421601,2011CB911003)国家自然科学基金(No.21275069,21177061) (No.21275069,21177061)江苏省高校自然科学基金(No.11KJB150008)江苏高校优势学科建设工程资助项目。 (No.11KJB150008)

  • Aseparable magnetic photocatalyst (Fe3O4/C/TiO2) was prepared by a hydrothermal reaction with the reaction of FeCl3, glucose and tetrabutyltitanate. The catalyst Fe3O4/C/TiO2 was characterized in terms of particle size, morphology and phase by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectrometry, vibration sample magnetometry (VSM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The catalytic activities and mechanism were evaluated by degradation of 2,4,6-trichlorophenol (TCP) aqueous solution. The reaction mechanism was investigated by the fluorescence technique. The results indicate that the catalyst has high degradation abilities and can be easily separated and reused by an external magnetic field. TCPcan be effectively degraded by 97.9% in the use of 1 g·L-1 Fe3O4/C/TiO2 under 18 W UVlight within50 min. Adegradation rate of 95.1% can be maintained after 6 cycles. The hydroxyl radicals (OH) have been detected in the reaction.
  • 加载中
    1. [1]

      [1] Aranda C, Godoy F, Becerra J, et al. Biodegradation, 2003, 14:265-274 [2] Xun L, Webster C M. J. Biol. Chem, 2004,279:6696-6700 [3] Dionysiou D D, Khodadoust A P, Kern A M, et al. Appl. Catal. B, 2000,24:139-155 [4] Bandara J, Mielczarski J A, Lopez A, et al. Appl. Catal. B, 2001,34:321-333 [5] Shriwas A K, Gogate P R. Ind. Eng. Chem. Res., 2011,50: 9601-9608 [6] Ahuja D, Bachas L, Bhattacharyya D. Chemosphere, 2007, 66:2193-2200 [7] Li Y, Bachas L, Bhattacharyya D. Environ. Sci. Technol., 2005,22:756-771 [8] Graham N, Chu W, Lau C. Chemosphere, 2003,51:237-243 [9] Aal A, Mahmoud S, Aboul-Gheit A. Nanoscale Res. Lett., 2009,4:627-634 [10]Androulaki E, Hiskia A, Dimotikali D, et al. Environ. Sci. Technol., 2000,34:2024-2028 [11]Rengaraj S, Li X. J. Mol. Catal. A: Chem., 2006,243:60-67 [12]Vijayan P, Mahendiran C, Suresh C, et al. Catal. Today, 2009,141:220-224 [13]Wang Y, Zhang Y, Zhao G, et al. ACS Appl. Mater. Interfaces, 2012,4:3965-3972 [14]Beydoun D, Amal R. J. Phys. Chem. B, 2000,104:4387-4396 [15]Yu X, Liu S, Yu J. Appl. Catal. B, 2011,104:12-20 [16]Yuan Q, Li N, Geng W, et al. Mater. Res. Bull., 2012,47: 2396-2402 [17]WANG Zheng(王拯), ZHANG Feng-Bao(张风宝). Chinese J. Environ. Chem.(Huanjing Huaxue), 2008,27(3):283-287 [18]Shi F, Li Y, Zhang Q, et al. Int. J. Photoenergy, 2012,2012: 1-8 [19]BAO Shu-Juan(包淑娟), ZHANG Xiao-Gang(张校刚), LIU Xian-Ming(刘献明). J. Funct. Mater.(Gongneng Cailiao), 2004,1(35):108-113 [20]ZHANG Xiu-Ling(张秀玲), GAO Shuai(高帅), YUAN Xue- De(袁学德), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(11):1912-1916 [21]Wang Z F, Guo H S, Yu Y L et al. J. Magn. Magn. Mater., 2006,302:397-404 [22]Zhang S, Niu H, Hu Z, et al. J. Chromatogr. A, 2010,1217: 4757-4764 [23]Deng H, Li X, Peng Q, et al. Angew. Chem. Int. Ed., 2005, 44:2782-2785 [24]Zhang Z, Duan H, Li S, et al. Langmuir, 2010,26:6676-6680 [25]Xuan S, Jiang W, Gong X, et al. J. Phys. Chem. C, 2009, 113:553-558 [26]Vijayan P, Mahendiran C, Suresh C, et al. Catal. Today, 2009,141:220-224 [27]Xiang Q J, Yu J G, Wong P K. J. Colloid Interface Sci., 2011,357:163-167 [28]Nosaka Y, Komori S, Yawata K, et al. Phys. Chem. Chem. Phys., 2003,5:4731-4735 [29]Xiang Q, Yu J, Wang W, et al. Chem. Commun., 2011,47: 6906-6908 [30]Tsai C H, Stern A, Chiou J F. J. Agric. Food Chem., 2001, 49:2137-2141

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    6. [6]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    8. [8]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    11. [11]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    16. [16]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    20. [20]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

Metrics
  • PDF Downloads(0)
  • Abstract views(342)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return