Citation: GUI Ming-Sheng, WANG Peng-Fei, YUAN Dong, YANG Yi-Kun. Synthesis and Visible-Light Photocatalytic Activity of Bi2WO6/g-C3N4 Composite Photocatalysts[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2057-2064. doi: 10.3969/j.issn.1001-4861.2013.00.330 shu

Synthesis and Visible-Light Photocatalytic Activity of Bi2WO6/g-C3N4 Composite Photocatalysts

  • Received Date: 24 April 2013
    Available Online: 20 May 2013

    Fund Project: 四川理工学院人才引进(No.2012RC05)资助项目 (No.2012RC05)

  • The Bi2WO6/g-C3N4 composite photocatalysts were successfully synthesized by implanting Bi2WO6 nanoparticles into the interlayer and surface of g-C3N4 using a solvothermal method. The prepared samples were characterized by XRD, SEM, TEM, UV-Vis, BET and photogradation of RhBfor comprehensive structural, morphological, specific surface area and visible-light properties. This results show the interlayer structure of g-C3N4 was partially peeled and formed Bi2WO6/g-C3N4 photocatalyst. The 60 wt% Bi2WO6/g-C3N4 photocatalysts possess enhanced photocatalytic activity than the single phase Bi2WO6 and g-C3N4 under visible light, which can be ascribe to its wide visible light reponse, large surface area and high quantum efficiency. In addition, the Bi2WO6/g-C3N4 composite is not only highly stable but also easy to be collected.
  • 加载中
    1. [1]

      [1] Zhang X W, Zhang T, Ng J W, et al. Environ. Sci. Technol., 2010,44(1):439-444 [2] Denny I F, Permana E, Scott J, et al. Environ. Sci., Technol., 2010,44(14):5558-5563 [3] WU Da-Wang (吴大旺), LI Shuo (李硕), ZHANG Qiu-Lin (张秋林), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,26(7):1383-1388 [4] Tryk D A, Fujishima A, Honda K, Electrochim Acta, 2000, 45(15-16):2363-2376 [5] Yang X F, Cui H Y, Li Y, et al. ACS Catal., 2013,3(3):363- 369 [6] Long M C, Cai W M, Cai J, et al. J. Phys. Chem. B, 2006, 110(41):20211-20216 [7] ZHANG Li(张丽), YAN Jian-Hui(阎建辉), ZHOU Min-Jie (周敏杰), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(9):1827-1834 [8] Xiao X, Hao R, Liang M, et al. J. Hazard. Mater., 2012, 233-234:122-130 [9] Iwaszuk A, Nolan M, Jin Q L, et al. J. Phys. Chem. C, 2013, 117(6):2709-2718 [10]Fan H M, Jiang T F, Li H Y, et al. J. Phys. Chem. C, 2012,116(3):2425-2430 [11]Saha D, Madras G, Row T N G, Mater. Res. Bull., 2011,46 (8):1252-1256 [12]Lee Y L, Chi C F, Liau S Y. Chem. Mater., 2010,22:922- 926 [13]Wang X C, Maeda K, Chen X F, et al. J. Am. Chem. Soc., 2009,131(5):1680-1681 [14]Barolo G, Livraghi S, Chiesa M, et al. J. Phys. Chem. C, 2012,116(39):20887-20894 [15]Guzman F, Chuang S S C, Yang C. Ind. Eng. Chem. Res., 2013,52(1):61-65 [16]Zhou H Y, Peng Y, Qin S C. Chin. J. Chem., 2011,29(11): 2345-2349 [17]Gui M S, Zhang W D. Nanotechnology, 2011,22(26):265601 [18]Gui M S, Zhang W D, Chang Y Q, et al. Chem. Eng. J., 2012,197:283-288 [19]LI Ben-Xia (李本侠), WANG Yan-Fen (王艳芬), WU Yu- Lei (吴玉雷). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):417-424 [20]Liu Q, Zhang J. Y. Langmuir, 2013,29(11):3821-3828 [21]Dong G H, Zhang L Z. J. Phys. Chem. C, 2013,117(8):4062 -4068 [22]Ma X G, Lü Y H, Xu J, et al. J. Phys. Chem. C, 2012,116 (44):23485-23493 [23]Li X H, Wang X C, Markus A. ACS Catal., 2012,2(10):2082 -2086 [24]Joseph A S, Steven H O, Nancy J D, et al. ACS Catal., 2012,2(6):1138-1146 [25]Ge L, Han C C, Liu J. Appl. Catal. B: Environ., 2011,108- 109:100-107 [26]Wang X C, Maeda K, Thomas A, et al. Nat. Mater, 2009,8 (1):76-80 [27]Zhang Y J, Thomas A, Antonietti M, et al. J. Am. Chem. Soc., 2009,131(1):50-51 [28]Ge L. Mater. Lett., 2011,65(17-18):2652-2654 [29]Zhang Y J, Mori T, Niu L, et al. Energy Environ. Sci., 2011, 4(11):4517-4521 [30]Wu J, Duan F, Zheng Y, et al. J. Phys. Chem. C, 2007,111 (34):12866-25871 [31]Fumiaki A, Kohei N, Ryu A, et al. J. Phys. Chem. C, 2008, 112(25):9320-9326 [32]Thomas A, Fischer A, Goettmann F, et al. J. Mater. Chem., 2008,18(41):4893-4908 [33]Yang L, May P W, Yin L, et al. Chem. Mater., 2006,18(21): 5058-5064 [34]Raymundo P E, Cazorla A D, Linares S A, et al. Carbon, 2002,40(4):597-608 [35]Li X N, Huang R K, Hu Y H, et al. Inorg. Chem., 2012,51 (11):6245-6250 [36]Li W, Deng Y H, Wu Z X, et al. J. Am. Chem. Soc., 2011, 133(40):15830-15833 [37]Yu J G, Xiang Q J, Ran J R, et al. CrystEngComm, 2010,12 (3):872-879 [38]Yu J G, Qi L F, Jaroniec M. J. Phys. Chem. C, 2010,114 (30):13118-1125 [39]Yu X X, Yu J G, Cheng B, et al. J. Phys. Chem. C, 2009, 113(40):17527-17535 [40]Shang M, Wang W Z, Xu H L. Cryst. Growth Des., 2009,9 (2):991-996 [41]Kroll P, Hoffmann R. J. Am. Chem. Soc., 1999,121(19): 4696-4703 [42]Wang Y J, Bai X J, Pan C, et al. J. Mater. Chem., 2012,22 (23):11568-11573 [43]Li X N, Huang R K, Hu Y H, et al. Chen, Inorg. Chem., 2012,51(11):6245-6250 [44]Ge L, Zuo F, Liu J K, et al. J. Phys. Chem. C, 2012,116 (25):13708-13714 [45]Dong G H, Zhang L Z. J. Phys. Chem. C, 2013,117(8):4062- 4068

  • 加载中
    1. [1]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    3. [3]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(0)
  • Abstract views(440)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return