Citation: WANG Kai, JI Bing-Cheng, HAN Mei-Jia, LI Li-Wei. Preparation of Nitrogen-Doped Graphene with Solid Microwave Method[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2105-2109. doi: 10.3969/j.issn.1001-4861.2013.00.328 shu

Preparation of Nitrogen-Doped Graphene with Solid Microwave Method

  • Received Date: 13 March 2013
    Available Online: 19 May 2013

    Fund Project: 国家863高科技项目(No.2012AA110407) (No.2012AA110407)山东省科技发展计划(No.2011GGB01123)资助项目 (No.2011GGB01123)

  • Graphite oxide was synthesized via Hummers method with flake graphite as raw material. After centrifugation and washing to clean out the remnant slat, ethylenediamine (EDA) was added into the dispersion to react with graphene oxides giving rise to functional graphene sheets (FGS). The dried FGScan interact with microwaves strongly, producing superheating which results in decomposing the grafted EDAmolecules and in-situ doping graphene sheets. The morphology, structure, and components of the as-produced graphene were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), energy dispersion spectrum (EDS). The results showed that nitrogen-doped graphene sheets (NGS) can be successfully synthesized via this strategy. The synthesized nitrogen-doped graphene was transparent.
  • 加载中
    1. [1]

      [1] Guo S J, Dong S J. Chem. Soc. Rev., 2011,40:2644-2672 [2] Meyer J C, Geim A K, Katsnelson M I, et al. Nature, 2007, 446:60-63 [3] Wang K, Zhang L. Int. J. Electrochem. Sci., 2013,8:2892- 2897 [4] Reddy A, Srivastava A, Gowda S R, et al. ACS Nano, 2010, 4:6337-6342 [5] Wang K, Zhang L. Electrochemistry, 2013,81:259-261 [6] Ohta T, Bostwick A, Seyller T, et al. Science, 2006,313:951- 954 [7] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306:666-669 [8] Wang Y, Shao Y Y, Matson D W, et al. ACS Nano, 2010,4: 1790-1798 [9] Xuan W, Lin J Z, Mullen K. Nano Lett., 2008,8:323-327327 [10]Stoller M D, Park S J, Zhu Y W, et al. Nano Lett., 2008,8: 3498-3502 [11]Wang X R, Li X L, Zhang L, et al. Science, 2009,324:768- 771 [12]YANG Yong-Hui(杨勇辉), SUN Hong-Juan(孙红娟), PENG Tong-Jiang(彭同江). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010(11):2083-2090 [13]SU Peng(苏鹏), GUO Hui-Lin(郭慧林), PENG San(彭三), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2012 (11):2745-2753 [14]Panchokarla L S, Subrahmanyam K S, Saha S K, et al. Adv. Mater., 2009,21:4726 [15]Liu R L, Wu D Q, Feng X L, et al. Angew. Chem. Int. Ed., 2010,49:2565-2569 [16]Shen W Z, Fan W B. J. Mater. Chem. A, 2013,1:999-1013 [17]Li X L, Wang H L, Robinson J T, et al. J. Am. Chem. Soc., 2009,131:15939-15944 [18]Sheng Z H, Shao L, Chen J J, et al. ACS Nano, 2011,5: 4350-4358 [19]Compton O C, Dikin D A, Putz K W, et al. Adv. Mater., 2010,22:892-896 [20]Che J, Shen L, Xiao Y. J. Mater. Chem., 2010,20:1722- 1727 [21]Hu H, Zhao Z, Zhou Q, et al. Carbon, 2012,50:3267-3273 [22]MA Gui-Xiang(马贵香), ZHAO Jiang-Hong(赵江红), ZHENG Jiang-Feng(郑剑锋), et al. New Carbon Mater.(Xinxing Tan Cailiao), 2012,27(4):258-265 [23]Hu H, Zhao Z, Wan W, et al. Adv. Mater., 2013,25:2219- 2223 [24]Chen W F, Yan L F, Bangal P R. Carbon, 2010,48:1146- 1152 [25]Zhu Y W, Murali S, Stoller M D, et al. Carbon, 2010,48: 2118-2122

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

Metrics
  • PDF Downloads(0)
  • Abstract views(232)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return