Citation: ZHAI Hua-Song, WANG Kun-Peng, YU Chun-Yan, ZHAI Guang-Mei, DONG Hai-Liang, XU Bing-She. Effect of N2 Flow Rate on Morphology, Optical and Electrical Properties of GaN[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2027-2033. doi: 10.3969/j.issn.1001-4861.2013.00.323 shu

Effect of N2 Flow Rate on Morphology, Optical and Electrical Properties of GaN

  • Received Date: 13 May 2013
    Available Online: 6 June 2013

    Fund Project: 国家自然科学基金(No.51002102) (No.51002102)山西省回国留学人员重点科研(2009-03)资助项目。 (2009-03)

  • GaN micro/nanostructures were synthesized by chemical vapor deposition method (CVD) on Si (100) substrate with catalyst Ni, Ga and NH3 as raw materials. Effect of N2 flow rate on the morphology as well as optical and electrical properties of GaNwere researched. The morphology, structure, composition, optical and electrical properties were characterized by Field emission scanning electron microscopy (SEM), Transmission electron microscopy(TEM), X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDS), Photoluminescence (PL) and Hall effect measurement system (HMS-3000). The results indicate that with the increase of N2 flow rate, the morphology of GaNevolved from microrods to vermicular-like wires and then to smooth nanowires. All samples are hexagonal wurtzite, and show near-band-edge UVemission peaks of 383 nm and blue light emission peaks of about 470 nm. Hall test results show that all samples are p-type. Furthermore, the morphology evolution mechanisms of GaNare analyzed.
  • 加载中
    1. [1]

      [1] Qian F, Li Y, Gradecak S, et al. Nat. Mater., 2008,7:701- 706 [2] Tomioka K, Motohisa J, Hara S, et al. Nano Lett, 2010,10(5): 1639-1644 [3] Schwarz U T, Pindl M, Wegscheider W, et al. Appl. Phys. Lett., 2005,86(16):161112-161115 [4] ZHU Lin(朱琳), YU Chun-Yan(余春燕), LIANG Jian(梁建), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013, 29(1):63-68 [5] Seryogin G, Shalish I, Moberlychan W, et al. Nano Technol., 2005,16:2342-2345 [6] Dong Z H, Xue C S, Zhuang H Z, et al. Nano struct., 2005, 27:32-37 [7] Cai X M, Djuri?觢ic A B, Xie M H, et al. Appl. Phys. Lett., 2005, 87(18):183103-183105 [8] Wang L, Zhang X, Huang R, et al. Solid State Commun., 2004,130(11):769-772 [9] Yin L W, Bando Y, Zhu Y C, et al. Appl. Phys. Lett., 2004, 84(19):3912-3914 [10]Tu L W, Hsiao C L, Chi T W, et al. Appl. Phys. Lett., 2003, 82(10):1601-1603 [11]Kim H M, Kim D S, Kim D Y, et al. Appl. Phys. Lett., 2002,81(12):2193-2195 [12]Kim H M, Kim D S, Park Y S, et al. Adv Mater., 2002,14 (13-14):991-993 [13]Li Z J, Chen X L, Li H J, et al. Appl. Phys. A, 2001,72(5): 629-632 [14]LIANG Jian(梁建), LIU Hai-Rui(刘海瑞), WANG Xiao-Ning (王晓宁), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013,29(5):1019-1024 [15]Chung R B, Han C, Pan C C, et al. Appl. Phys. Lett., 2012, 101(13):131113-131116 [16]WANG Xiao-Yong(王晓勇), ZHONG Ming(种明), ZHAO De -Gang(赵德刚), et al. Acta Phys. Sin.(Wuli Xuebao), 2012, 61(21):217302-217307 [17]Kwon H Y, Shin M J, Choi Y J, et al. Cryst. Growth Des., 2009,311(16);4146-4151 [18]Hersee S D, Sun X Y, Wang X. Nano Lett, 2006,6(8):1808 -1811 [19]Seong H K, Jeong H, Ha R, et al. Mater. Int., 2008,14(3): 353-356 [20]Xiang X, Cao C B, Zhai H Z, et al. Appl. Phys. A, 2005,80 (5):1129-1132 [21]Lü W, Wu L L, Wu Y S, et al. Cryst. Growth Des., 2007, 307(1):1-5 [22]CAO Yu-Ping(曹玉萍), XUE Cheng-Shan(薛成山), SHI Feng(石锋), et al. J. Funct. Mater.(Gongneng Cailiao), 2010, 41(2):264-267 [23]Beh K P, Yam F K, Low L L, et al. Acuum, 2013,95:6-11 [24]Cai X M, Djuri?觢ic A B, Xie M H, Thin Solid Films., 2006, 515(3):984-989 [25]Shi F, Zhang D D, Xue C S. Mater. Sci. Eng. B, 2010,167 (2):80-84 [26]Huang C T, Song J H, Lee W F, et al. J. Am. Chem. Soc., 2010,132(13):4766-4771 [27]Low L L, Yam F K, Beh K P, et al. Appl. Surf. Sci., 2011, 258(1):542-546 [28]Kang S, Kang B K, Kim S W, et al. Cryst. Growth Des., 2010,10(6):2581-2584 [29]Wei X F, Shi F. Appl. Surf. Sci., 2011,257(23):9931-9934 [30]Furtmayr F, Vielemeyer M, Stutzmann M, et al. J. Appl. Phys., 2008,104(3):034309-034315 [31]Navamathavan R, Ra Y H, Song K Y, et al. Appl. Phys., 2011,11(1):77-81 [32]Wang Y, Xue C, Zhuang H, et al. Appl. Surf. Sci., 2009, 255:7719-7722 [33]Seryogin G, Shalish I, Moberlychan W, et al. Nanotechnology, 2005,16:2342-2345 [34]Low L L,Yam F K,Beh K P, et al. Appl. Surf. Sci., 2011, 258(1):542-546 [35]Su Y, Gao M, Meng X, et al. J. Phys. Chem. Solids., 2009, 70(7):1062-1065 [36]Zhang G Y, Tong Y Z, Yang Z J, et al. Appl. Phys. Lett., 1997,71(23):3376-3378 [37]Kim J R, Kim B K, Lee I J, et al. Phys. Rev. B, 2004,69 (23):233303-233306 [38]Li J Y, An L, Lu C G, et al. Nano Lett., 2006,6(2):148-152

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    4. [4]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    5. [5]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    11. [11]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    13. [13]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    14. [14]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    15. [15]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    18. [18]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    19. [19]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(0)
  • Abstract views(264)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return