Citation:
ZHAI Hua-Song, WANG Kun-Peng, YU Chun-Yan, ZHAI Guang-Mei, DONG Hai-Liang, XU Bing-She. Effect of N2 Flow Rate on Morphology, Optical and Electrical Properties of GaN[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(10): 2027-2033.
doi:
10.3969/j.issn.1001-4861.2013.00.323
-
GaN micro/nanostructures were synthesized by chemical vapor deposition method (CVD) on Si (100) substrate with catalyst Ni, Ga and NH3 as raw materials. Effect of N2 flow rate on the morphology as well as optical and electrical properties of GaNwere researched. The morphology, structure, composition, optical and electrical properties were characterized by Field emission scanning electron microscopy (SEM), Transmission electron microscopy(TEM), X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDS), Photoluminescence (PL) and Hall effect measurement system (HMS-3000). The results indicate that with the increase of N2 flow rate, the morphology of GaNevolved from microrods to vermicular-like wires and then to smooth nanowires. All samples are hexagonal wurtzite, and show near-band-edge UVemission peaks of 383 nm and blue light emission peaks of about 470 nm. Hall test results show that all samples are p-type. Furthermore, the morphology evolution mechanisms of GaNare analyzed.
-
-
-
[1]
[1] Qian F, Li Y, Gradecak S, et al. Nat. Mater., 2008,7:701- 706 [2] Tomioka K, Motohisa J, Hara S, et al. Nano Lett, 2010,10(5): 1639-1644 [3] Schwarz U T, Pindl M, Wegscheider W, et al. Appl. Phys. Lett., 2005,86(16):161112-161115 [4] ZHU Lin(朱琳), YU Chun-Yan(余春燕), LIANG Jian(梁建), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013, 29(1):63-68 [5] Seryogin G, Shalish I, Moberlychan W, et al. Nano Technol., 2005,16:2342-2345 [6] Dong Z H, Xue C S, Zhuang H Z, et al. Nano struct., 2005, 27:32-37 [7] Cai X M, Djuri?觢ic A B, Xie M H, et al. Appl. Phys. Lett., 2005, 87(18):183103-183105 [8] Wang L, Zhang X, Huang R, et al. Solid State Commun., 2004,130(11):769-772 [9] Yin L W, Bando Y, Zhu Y C, et al. Appl. Phys. Lett., 2004, 84(19):3912-3914 [10]Tu L W, Hsiao C L, Chi T W, et al. Appl. Phys. Lett., 2003, 82(10):1601-1603 [11]Kim H M, Kim D S, Kim D Y, et al. Appl. Phys. Lett., 2002,81(12):2193-2195 [12]Kim H M, Kim D S, Park Y S, et al. Adv Mater., 2002,14 (13-14):991-993 [13]Li Z J, Chen X L, Li H J, et al. Appl. Phys. A, 2001,72(5): 629-632 [14]LIANG Jian(梁建), LIU Hai-Rui(刘海瑞), WANG Xiao-Ning (王晓宁), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013,29(5):1019-1024 [15]Chung R B, Han C, Pan C C, et al. Appl. Phys. Lett., 2012, 101(13):131113-131116 [16]WANG Xiao-Yong(王晓勇), ZHONG Ming(种明), ZHAO De -Gang(赵德刚), et al. Acta Phys. Sin.(Wuli Xuebao), 2012, 61(21):217302-217307 [17]Kwon H Y, Shin M J, Choi Y J, et al. Cryst. Growth Des., 2009,311(16);4146-4151 [18]Hersee S D, Sun X Y, Wang X. Nano Lett, 2006,6(8):1808 -1811 [19]Seong H K, Jeong H, Ha R, et al. Mater. Int., 2008,14(3): 353-356 [20]Xiang X, Cao C B, Zhai H Z, et al. Appl. Phys. A, 2005,80 (5):1129-1132 [21]Lü W, Wu L L, Wu Y S, et al. Cryst. Growth Des., 2007, 307(1):1-5 [22]CAO Yu-Ping(曹玉萍), XUE Cheng-Shan(薛成山), SHI Feng(石锋), et al. J. Funct. Mater.(Gongneng Cailiao), 2010, 41(2):264-267 [23]Beh K P, Yam F K, Low L L, et al. Acuum, 2013,95:6-11 [24]Cai X M, Djuri?觢ic A B, Xie M H, Thin Solid Films., 2006, 515(3):984-989 [25]Shi F, Zhang D D, Xue C S. Mater. Sci. Eng. B, 2010,167 (2):80-84 [26]Huang C T, Song J H, Lee W F, et al. J. Am. Chem. Soc., 2010,132(13):4766-4771 [27]Low L L, Yam F K, Beh K P, et al. Appl. Surf. Sci., 2011, 258(1):542-546 [28]Kang S, Kang B K, Kim S W, et al. Cryst. Growth Des., 2010,10(6):2581-2584 [29]Wei X F, Shi F. Appl. Surf. Sci., 2011,257(23):9931-9934 [30]Furtmayr F, Vielemeyer M, Stutzmann M, et al. J. Appl. Phys., 2008,104(3):034309-034315 [31]Navamathavan R, Ra Y H, Song K Y, et al. Appl. Phys., 2011,11(1):77-81 [32]Wang Y, Xue C, Zhuang H, et al. Appl. Surf. Sci., 2009, 255:7719-7722 [33]Seryogin G, Shalish I, Moberlychan W, et al. Nanotechnology, 2005,16:2342-2345 [34]Low L L,Yam F K,Beh K P, et al. Appl. Surf. Sci., 2011, 258(1):542-546 [35]Su Y, Gao M, Meng X, et al. J. Phys. Chem. Solids., 2009, 70(7):1062-1065 [36]Zhang G Y, Tong Y Z, Yang Z J, et al. Appl. Phys. Lett., 1997,71(23):3376-3378 [37]Kim J R, Kim B K, Lee I J, et al. Phys. Rev. B, 2004,69 (23):233303-233306 [38]Li J Y, An L, Lu C G, et al. Nano Lett., 2006,6(2):148-152
-
[1]
-
-
-
[1]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[2]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[3]
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
-
[4]
Kun Wang , Jiaxuan Qiu , Zefei Wu , Yang Liu , Yongqi Liu , Xiangpeng Chen , Bao Zang , Jianmei Chen , Yunchao Lei , Longlu Wang , Qiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993
-
[5]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[6]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[7]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[8]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[9]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[10]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[11]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[12]
Bin Chen , Chaoyang Zheng , Dehuan Shi , Yi Huang , Renxia Deng , Yang Wei , Zheyuan Liu , Yan Yu , Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468
-
[13]
Chang LIU , Chao ZHANG , Tongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305
-
[14]
Chaozheng He , Menghui Xi , Chenxu Zhao , Ran Wang , Ling Fu , Jinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671
-
[15]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[16]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[17]
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
-
[18]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[19]
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(264)
- HTML views(9)