Citation: Han A-Li, Du Ping-Wu. Platinum-Cobalt Dinuclear Complex:Synthesis, Photophysical Properties and Visible Light-Driven Hydrogen Production from Water[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1703-1709. doi: 10.3969/j.issn.1001-4861.2013.00.309 shu

Platinum-Cobalt Dinuclear Complex:Synthesis, Photophysical Properties and Visible Light-Driven Hydrogen Production from Water

  • Received Date: 28 February 2013
    Available Online: 14 June 2013

    Fund Project: 国家自然科学基金(No.21271166)资助项目。 (No.21271166)

  • A platinum sensitizer-cobalt dinuclear complex, [Pt(tBu3tpy)([C≡C-C6H4N])-Co(dmgH)2PyCl, 5] (tBu3tpy=4,4',4"-tri(tert-butyl)-2,2':6',2"-terpyridine, C6H4N=4-pyridyl, dmgH=dimethylglyoxime, Py=pyridine), has been synthesized and characterized. The complex 5 shows absorption spectra in the visible region, which are assigned to mainly metal-to-ligand charge transfer (MLCT) character from the platinum sensitizer part. The cobalt moiety in complex 5 could quench the luminescence of the platinum part, indicating a possible process of intramolecular electron transfer. This dinuclear complex has been used for light-driven catalytic hydrogen production from water in the presence of triethanolamine (TEOA). The hydrogen production is affected by many factors, such as pH value and solvent. And the results show that this molecular catalyst could be decomposed to release the platinum based photosensitizer, as confirmed by absorption spectra and mass spectrometry.
  • 加载中
    1. [1]

      [1] Kalyanasundaram K, Kiwi J, Gratzel M. Helv. Chim. Acta, 1978,61:2720-2730

    2. [2]

      [2] Esswein A J, Nocera D G. Chem. Rev., 2007,107:4022-4047

    3. [3]

      [3] Goldsmith J I, Hudson W R, Lowry M S, et al. J. Am. Chem. Soc., 2005,127:7502-7510

    4. [4]

      [4] Du P W, Schneider J, Jarosz P, et al. J. Am. Chem. Soc., 2006,128:7726-7727

    5. [5]

      [5] Du P W, Schneider J, Jarosz P, et al. J. Phys. Chem. B, 2007, 111:6887-6894

    6. [6]

      [6] Du P W, Eisenberg R. Energy Environ. Sci., 2012,5:6012-6021

    7. [7]

      [7] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011,50:7238-7266

    8. [8]

      [8] Razavet M, Artero V, Fontecave M. Inorg. Chem., 2005,44: 4786-4795

    9. [9]

      [9] Baffert C, Artero V, Fontecave M. Inorg. Chem., 2007,46: 1817-1824

    10. [10]

      [10] Du P W, Knowles K, Eisenberg R. J. Am. Chem. Soc., 2008, 130:12576-12577

    11. [11]

      [11] Zhang P, Wang M, Dong J, et al. J. Phys. Chem. C, 2010, 114:15868-15874

    12. [12]

      [12] Hu X, Brunschwig B S, Peters J C. J. Am. Chem. Soc., 2007, 129:8988-8998

    13. [13]

      [13] Hu X, Cossairt B M, Brunschwig B S, et al. Chem. Commun., 2005,37:4723-4725

    14. [14]

      [14] Dempsey J L, Brunschwig B S, Winkler J R, et al. Acc. Chem. Res., 2009,42:1995-2004

    15. [15]

      [15] Ozawa H, Haga M A, Sakai K. J. Am. Chem. Soc., 2006, 128:4926-4927

    16. [16]

      [16] Rau S, Schfer B, Gleich D, et al. Angew. Chem. Int. Ed., 2006,45:6215-6218

    17. [17]

      [17] Elvington M, Brown J, Arachchige S M, et al. J. Am. Chem. Soc., 2007,129:10644-10645

    18. [18]

      [18] Fihri A, Artero V, Pereira A, et al. Dalton Trans., 2008,41: 5567-5569

    19. [19]

      [19] Fihri A, Artero V, Razavet M, et al. Angew. Chem. Int. Ed., 2008,47:564-567

    20. [20]

      [20] Zhang P, Wang M, Li C, et al. Chem. Commun., 2010,46: 8806-8808

    21. [21]

      [21] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011,50:7238-7266

    22. [22]

      [22] Lai S W, Chan M C W, Cheung K K, et al. Inorg. Chem., 1999,38:4262-4267

    23. [23]

      [23] Yam V W W, Tang R P L, Wong K M C, et al. Organometallics 2001,20:4476-4482.

    24. [24]

      [24] Yang Q Z, Wu L Z, Wu Z X, et al. Inorg. Chem., 2002,41: 5653-5655.

    25. [25]

      [25] Calvert J M, Caspar J V, Binstead R A, et al. J. Am. Chem. Soc., 1982,104:6620-6627

    26. [26]

      [26] Chakraborty S, Wadas T J, Hester H, et al. Inorg. Chem., 2005,44:6284-6293

    27. [27]

      [27] Chakraborty S, Wadas T J, Hester H, et al. Inorg. Chem., 2005,44:6865-6878

    28. [28]

      [28] McCormick T M, Han Z, Weinberg D J, et al. Inorg. Chem., 2011,50:10660-10666

  • 加载中
    1. [1]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    4. [4]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    5. [5]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    6. [6]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    16. [16]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    17. [17]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    19. [19]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    20. [20]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(0)
  • Abstract views(345)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return