Citation: Han A-Li, Du Ping-Wu. Platinum-Cobalt Dinuclear Complex:Synthesis, Photophysical Properties and Visible Light-Driven Hydrogen Production from Water[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1703-1709. doi: 10.3969/j.issn.1001-4861.2013.00.309 shu

Platinum-Cobalt Dinuclear Complex:Synthesis, Photophysical Properties and Visible Light-Driven Hydrogen Production from Water

  • Received Date: 28 February 2013
    Available Online: 14 June 2013

    Fund Project: 国家自然科学基金(No.21271166)资助项目。 (No.21271166)

  • A platinum sensitizer-cobalt dinuclear complex, [Pt(tBu3tpy)([C≡C-C6H4N])-Co(dmgH)2PyCl, 5] (tBu3tpy=4,4',4"-tri(tert-butyl)-2,2':6',2"-terpyridine, C6H4N=4-pyridyl, dmgH=dimethylglyoxime, Py=pyridine), has been synthesized and characterized. The complex 5 shows absorption spectra in the visible region, which are assigned to mainly metal-to-ligand charge transfer (MLCT) character from the platinum sensitizer part. The cobalt moiety in complex 5 could quench the luminescence of the platinum part, indicating a possible process of intramolecular electron transfer. This dinuclear complex has been used for light-driven catalytic hydrogen production from water in the presence of triethanolamine (TEOA). The hydrogen production is affected by many factors, such as pH value and solvent. And the results show that this molecular catalyst could be decomposed to release the platinum based photosensitizer, as confirmed by absorption spectra and mass spectrometry.
  • 加载中
    1. [1]

      [1] Kalyanasundaram K, Kiwi J, Gratzel M. Helv. Chim. Acta, 1978,61:2720-2730

    2. [2]

      [2] Esswein A J, Nocera D G. Chem. Rev., 2007,107:4022-4047

    3. [3]

      [3] Goldsmith J I, Hudson W R, Lowry M S, et al. J. Am. Chem. Soc., 2005,127:7502-7510

    4. [4]

      [4] Du P W, Schneider J, Jarosz P, et al. J. Am. Chem. Soc., 2006,128:7726-7727

    5. [5]

      [5] Du P W, Schneider J, Jarosz P, et al. J. Phys. Chem. B, 2007, 111:6887-6894

    6. [6]

      [6] Du P W, Eisenberg R. Energy Environ. Sci., 2012,5:6012-6021

    7. [7]

      [7] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011,50:7238-7266

    8. [8]

      [8] Razavet M, Artero V, Fontecave M. Inorg. Chem., 2005,44: 4786-4795

    9. [9]

      [9] Baffert C, Artero V, Fontecave M. Inorg. Chem., 2007,46: 1817-1824

    10. [10]

      [10] Du P W, Knowles K, Eisenberg R. J. Am. Chem. Soc., 2008, 130:12576-12577

    11. [11]

      [11] Zhang P, Wang M, Dong J, et al. J. Phys. Chem. C, 2010, 114:15868-15874

    12. [12]

      [12] Hu X, Brunschwig B S, Peters J C. J. Am. Chem. Soc., 2007, 129:8988-8998

    13. [13]

      [13] Hu X, Cossairt B M, Brunschwig B S, et al. Chem. Commun., 2005,37:4723-4725

    14. [14]

      [14] Dempsey J L, Brunschwig B S, Winkler J R, et al. Acc. Chem. Res., 2009,42:1995-2004

    15. [15]

      [15] Ozawa H, Haga M A, Sakai K. J. Am. Chem. Soc., 2006, 128:4926-4927

    16. [16]

      [16] Rau S, Schfer B, Gleich D, et al. Angew. Chem. Int. Ed., 2006,45:6215-6218

    17. [17]

      [17] Elvington M, Brown J, Arachchige S M, et al. J. Am. Chem. Soc., 2007,129:10644-10645

    18. [18]

      [18] Fihri A, Artero V, Pereira A, et al. Dalton Trans., 2008,41: 5567-5569

    19. [19]

      [19] Fihri A, Artero V, Razavet M, et al. Angew. Chem. Int. Ed., 2008,47:564-567

    20. [20]

      [20] Zhang P, Wang M, Li C, et al. Chem. Commun., 2010,46: 8806-8808

    21. [21]

      [21] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011,50:7238-7266

    22. [22]

      [22] Lai S W, Chan M C W, Cheung K K, et al. Inorg. Chem., 1999,38:4262-4267

    23. [23]

      [23] Yam V W W, Tang R P L, Wong K M C, et al. Organometallics 2001,20:4476-4482.

    24. [24]

      [24] Yang Q Z, Wu L Z, Wu Z X, et al. Inorg. Chem., 2002,41: 5653-5655.

    25. [25]

      [25] Calvert J M, Caspar J V, Binstead R A, et al. J. Am. Chem. Soc., 1982,104:6620-6627

    26. [26]

      [26] Chakraborty S, Wadas T J, Hester H, et al. Inorg. Chem., 2005,44:6284-6293

    27. [27]

      [27] Chakraborty S, Wadas T J, Hester H, et al. Inorg. Chem., 2005,44:6865-6878

    28. [28]

      [28] McCormick T M, Han Z, Weinberg D J, et al. Inorg. Chem., 2011,50:10660-10666

  • 加载中
    1. [1]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    4. [4]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(0)
  • Abstract views(269)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return