Citation: CHEN Gong-De, ZHANG Wei-Xin, YANG Ze-Heng, WANG Qiang, YAO Hong-Xu. Lithium Storage Performances of TiO2 Nanotube Arrays on Copper Substrate[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1759-1768. doi: 10.3969/j.issn.1001-4861.2013.00.308
-
Lithium storage performances of TiO2 nanotube arrays on copper substrate as electrodes in lithium-ion batteries were investigated. Amorphous TiO2 nanotube arrays were prepared via a sacrificial template method from outward coating of TiO2 and inward etching of Cu(OH)2 nanorod array templates on copper substrate. Anatase TiO2 nanotube arrays were obtained by post-heating the sample at 500 ℃ for 4 h. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The electrochemical performances of amorphous and anatase TiO2 nanotube arrays were investigated by galvanostatic charge-discharge measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results indicate that compared with amorphous TiO2 nanotube arrays, anatase TiO2 nanotube arrays exhibit a superior rate capability and cycling performance due to their lower amounts of adsorbed water, higher crystallization, lower charge-transfer resistance, higher lithium-ion diffusion coefficient, and more stable one-dimensional tubular structure. They show an initial specific discharge capacity of 353 mAh·g-1 and 243 mAh·g-1 even after 40 cycles at 0.2C. At a high rate of 8C, their discharge capacity can reach 90 mAh·g-1.
-
-
[1]
[1] Wagemaker M, Kearley G J, Well A A, et al. J. Am. Chem. Soc., 2003,125:840-848
-
[2]
[2] Macklin W J, Neat R J. Solid State Ionics, 1992,53:694-700
-
[3]
[3] Chen J S, Lou X W. Electrochem. Commun., 2009,11:2332-2335
-
[4]
[4] Bao S J, Bao Q L, Li C M, et al. Electrochem. Commun., 2007, 9:1233-1238
-
[5]
[5] Xu J W, Jia C H, Cao B, et al. Electrochim. Acta, 2007,52: 8044-8047
-
[6]
[6] Chen J S, Tan Y L, Li C M, et al. J. Am. Chem. Soc., 2010, 132:6124-6130
-
[7]
[7] Wang D W, Fang H T, Li F, et al. Adv. Funct. Mater., 2008,18:3787-3793
-
[8]
[8] Jiang J, Liu J P, Ding R M, et al. J. Phys. Chem. C, 2010,114: 929-932
-
[9]
[9] Wang J, Lin Z Q. Chem. Mater., 2008,20:1257-1261
-
[10]
[10] Yoriya S, Paulose M, Varghese O K, et al. J. Phys. Chem. C, 2007,111:13770-13776
-
[11]
[11] Lakshmi B B, Dorhout P K, Martin C R. Chem. Mater., 1997, 9:857-862
-
[12]
[12] Li X H, Liu W M, Li H L. Appl. Phys. A, 2005,80:317-320
-
[13]
[13] Tian Z R, Voigt J A, Liu J, et al. J. Am. Chem. Soc., 2003, 125:12384-12385
-
[14]
[14] Ortiz G F, Hanzu I, Djenizian T, et al. Chem. Mater., 2009,21: 63-67
-
[15]
[15] Fang H T, Liu M, Wang D W, et al. Nanotechnol., 2009,20:1-7
-
[16]
[16] Zhang W X, Chen G D, Yang Z H, et al. AIChE J., 2013,59: 2134-2144
-
[17]
[17] Zhang W X, Xu J, Yang Z H, et al. Chem. Phys. Lett., 2007, 434:256-259
-
[18]
[18] Xu J, Zhang W X, Yang Z H, et al. Inorg. Chem., 2008,47: 699-704
-
[19]
[19] Ortiz G F, Hanzu I, Knauth P, et al. Electrochim. Acta, 2009, 54:4262-4268
-
[20]
[20] Lou X W, Archer L A, Yang Z C. Adv. Mater., 2008,20:3987-4019
-
[21]
[21] Li H Q, Martha S K, Unocic R R, et al. J. Power Sources, 2012,218:88-92
-
[22]
[22] Pei B, Yao H X, Zhang W X, et al. J. Power Sources, 2012, 220:317-323
-
[23]
[23] Bard A J, Faulkner L R. Electrochemical Methods; Fundamentals and Applications. New York: John Wiley & Sons, Inc., 1980:378-387
-
[24]
[24] Krol R, Goossens A, Schoonman J. J. Phys. Chem. B, 1999, 103:7151-7159
-
[25]
[25] Wang J, Polleux J, Lim J, et al. J. Phys. Chem. C, 2007,111: 14925-14931.
-
[26]
[26] Cava R J, Murphy D W, Zahurak S. J. Solid State Chem., 1984,53:64-75
-
[27]
[27] Nuspl G, Yoshizawa K, Yamabe T. J. Mater. Chem., 1997,7: 2529-2536
-
[28]
[28] Shin J Y, Samuelis D, Maier J. Adv. Funct. Mater., 2011,21: 3464-347
-
[1]
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[2]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[3]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[4]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[5]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[6]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[7]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[8]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[9]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[12]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[13]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[14]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[15]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[16]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[17]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[18]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[19]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[20]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(193)
- HTML views(26)