Citation: CHEN Gong-De, ZHANG Wei-Xin, YANG Ze-Heng, WANG Qiang, YAO Hong-Xu. Lithium Storage Performances of TiO2 Nanotube Arrays on Copper Substrate[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1759-1768. doi: 10.3969/j.issn.1001-4861.2013.00.308 shu

Lithium Storage Performances of TiO2 Nanotube Arrays on Copper Substrate

  • Received Date: 26 February 2013
    Available Online: 10 June 2013

    Fund Project: 国家自然科学基金(No.21271058, 21176054, 20871038) (No.21271058, 21176054, 20871038)安徽省教育厅创新团队项目(TD200702)资助项目。 (TD200702)

  • Lithium storage performances of TiO2 nanotube arrays on copper substrate as electrodes in lithium-ion batteries were investigated. Amorphous TiO2 nanotube arrays were prepared via a sacrificial template method from outward coating of TiO2 and inward etching of Cu(OH)2 nanorod array templates on copper substrate. Anatase TiO2 nanotube arrays were obtained by post-heating the sample at 500 ℃ for 4 h. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The electrochemical performances of amorphous and anatase TiO2 nanotube arrays were investigated by galvanostatic charge-discharge measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results indicate that compared with amorphous TiO2 nanotube arrays, anatase TiO2 nanotube arrays exhibit a superior rate capability and cycling performance due to their lower amounts of adsorbed water, higher crystallization, lower charge-transfer resistance, higher lithium-ion diffusion coefficient, and more stable one-dimensional tubular structure. They show an initial specific discharge capacity of 353 mAh·g-1 and 243 mAh·g-1 even after 40 cycles at 0.2C. At a high rate of 8C, their discharge capacity can reach 90 mAh·g-1.
  • 加载中
    1. [1]

      [1] Wagemaker M, Kearley G J, Well A A, et al. J. Am. Chem. Soc., 2003,125:840-848

    2. [2]

      [2] Macklin W J, Neat R J. Solid State Ionics, 1992,53:694-700

    3. [3]

      [3] Chen J S, Lou X W. Electrochem. Commun., 2009,11:2332-2335

    4. [4]

      [4] Bao S J, Bao Q L, Li C M, et al. Electrochem. Commun., 2007, 9:1233-1238

    5. [5]

      [5] Xu J W, Jia C H, Cao B, et al. Electrochim. Acta, 2007,52: 8044-8047

    6. [6]

      [6] Chen J S, Tan Y L, Li C M, et al. J. Am. Chem. Soc., 2010, 132:6124-6130

    7. [7]

      [7] Wang D W, Fang H T, Li F, et al. Adv. Funct. Mater., 2008,18:3787-3793

    8. [8]

      [8] Jiang J, Liu J P, Ding R M, et al. J. Phys. Chem. C, 2010,114: 929-932

    9. [9]

      [9] Wang J, Lin Z Q. Chem. Mater., 2008,20:1257-1261

    10. [10]

      [10] Yoriya S, Paulose M, Varghese O K, et al. J. Phys. Chem. C, 2007,111:13770-13776

    11. [11]

      [11] Lakshmi B B, Dorhout P K, Martin C R. Chem. Mater., 1997, 9:857-862

    12. [12]

      [12] Li X H, Liu W M, Li H L. Appl. Phys. A, 2005,80:317-320

    13. [13]

      [13] Tian Z R, Voigt J A, Liu J, et al. J. Am. Chem. Soc., 2003, 125:12384-12385

    14. [14]

      [14] Ortiz G F, Hanzu I, Djenizian T, et al. Chem. Mater., 2009,21: 63-67

    15. [15]

      [15] Fang H T, Liu M, Wang D W, et al. Nanotechnol., 2009,20:1-7

    16. [16]

      [16] Zhang W X, Chen G D, Yang Z H, et al. AIChE J., 2013,59: 2134-2144

    17. [17]

      [17] Zhang W X, Xu J, Yang Z H, et al. Chem. Phys. Lett., 2007, 434:256-259

    18. [18]

      [18] Xu J, Zhang W X, Yang Z H, et al. Inorg. Chem., 2008,47: 699-704

    19. [19]

      [19] Ortiz G F, Hanzu I, Knauth P, et al. Electrochim. Acta, 2009, 54:4262-4268

    20. [20]

      [20] Lou X W, Archer L A, Yang Z C. Adv. Mater., 2008,20:3987-4019

    21. [21]

      [21] Li H Q, Martha S K, Unocic R R, et al. J. Power Sources, 2012,218:88-92

    22. [22]

      [22] Pei B, Yao H X, Zhang W X, et al. J. Power Sources, 2012, 220:317-323

    23. [23]

      [23] Bard A J, Faulkner L R. Electrochemical Methods; Fundamentals and Applications. New York: John Wiley & Sons, Inc., 1980:378-387

    24. [24]

      [24] Krol R, Goossens A, Schoonman J. J. Phys. Chem. B, 1999, 103:7151-7159

    25. [25]

      [25] Wang J, Polleux J, Lim J, et al. J. Phys. Chem. C, 2007,111: 14925-14931.

    26. [26]

      [26] Cava R J, Murphy D W, Zahurak S. J. Solid State Chem., 1984,53:64-75

    27. [27]

      [27] Nuspl G, Yoshizawa K, Yamabe T. J. Mater. Chem., 1997,7: 2529-2536

    28. [28]

      [28] Shin J Y, Samuelis D, Maier J. Adv. Funct. Mater., 2011,21: 3464-347

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    3. [3]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    4. [4]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    5. [5]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    6. [6]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    11. [11]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    12. [12]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    13. [13]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    14. [14]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    15. [15]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    16. [16]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    17. [17]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    19. [19]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    20. [20]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

Metrics
  • PDF Downloads(0)
  • Abstract views(335)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return