Citation: JU Zhan-Feng, YUAN Da-Qiang. Initial Theoretical Evaluation of Pore Structure for Metal-Organic Frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1633-1638. doi: 10.3969/j.issn.1001-4861.2013.00.303 shu

Initial Theoretical Evaluation of Pore Structure for Metal-Organic Frameworks

  • Received Date: 28 February 2013
    Available Online: 15 May 2013

    Fund Project: 国家自然科学基金(No.21271172) (No.21271172)福建省自然科学基金(No. 2012J01058)资助项目。 (No. 2012J01058)

  • As newly emerging porous materials, metal-organic frameworks (MOFs) have been studied for applications in gas storage and separation. In this article, we introduce some computational tools for systematic characterization of the pore structure for MOFs and give some examples to discuss the usage of these tools.
  • 加载中
    1. [1]

      [1] Farrusseng D. Metal-Organic Frameworks: Applications from Catalysis to Gas Storage. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2011:1-18

    2. [2]

      [2] Zhou H-C, Long J R, Yaghi O M. Chem. Rev., 2012,112(2): 673-674

    3. [3]

      [3] O’Keeffe M, Yaghi O M. Chem. Rev., 2011,112(2):675-702

    4. [4]

      [4] Cook T R, Zheng Y R, Stang P J. Chem. Rev., 2012,113(1): 734-777

    5. [5]

      [5] Cui Y, Yue Y, Qian G, et al. Chem. Rev., 2011,112(2): 1126-1162

    6. [6]

      [6] Kreno L E, Leong K, Farha O K, et al. Chem. Rev., 2011, 112(2):1105-1125

    7. [7]

      [7] Zhang W, Xiong R G. Chem. Rev., 2011,112(2):1163-1195

    8. [8]

      [8] ZHAO Li(赵莉), ZENG He-Ping(曾和平). Chin. J. Org. Chem.(Youji Huaxue), 2012,32(9):1633-1642

    9. [9]

      [9] LIU Hong-Wen(刘宏文), LU Wen-Guan(卢文贯). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(11):2205-2210

    10. [10]

      [10] YUAN Li(袁利), LU Wen-Guan(卢文贯). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(7):1324-1328

    11. [11]

      [11] Li J R, Sculley J, Zhou H C. Chem. Rev., 2011,112(2):869-932

    12. [12]

      [12] Suh M P, Park H J, Prasad T K, et al. Chem. Rev., 2011, 112(2):782-835

    13. [13]

      [13] Sumida K, Rogow D L, Mason J A, et al. Chem. Rev., 2011,112(2):724-781

    14. [14]

      [14] ZUO Cong-Yu(左从玉), LU Zhi-Yong(卢治拥), BAI Jun-Feng(白俊峰). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(9):1799-1808

    15. [15]

      [15] Spek A L. J. Appl. Crystallogr., 2003,36:7-13

    16. [16]

      [16] Materials Studio Release Notes, Release 4.4. San Diego: Accelrys Software Inc., 2008.

    17. [17]

      [17] Sarkisov L, Harrison A. Mol. Simulat., 2011,37(15):1248-1257

    18. [18]

      [18] First E L, Floudas C A. Microporous Mesoporous Mater., 2013,165:32-39

    19. [19]

      [19] Kaye S S, Dailly A, Yaghi O M, et al. J. Am. Chem. Soc., 2007,129(46):14176-14177

    20. [20]

      [20] Rowsell J L, Yaghi O M. J. Am. Chem. Soc., 2006,128(4): 1304-1315

    21. [21]

      [21] Han D, Jiang F L, Wu M Y, et al. Chem. Commun., 2011, 47(35):9861-9863

    22. [22]

      [22] Chavan S, Vitillo J G, Gianolio D, et al. Phys. Chem. Chem. Phys., 2012,14(5):1614-1626

    23. [23]

      [23] Stavila V, Bhakta R K, Alam T M, et al. ACS Nano, 2012,6 (11):9807-9817

    24. [24]

      [24] Yuan D, Zhao D, Sun D, et al. Angew. Chem. Int. Ed., 2010,49(31):5357-5361

    25. [25]

      [25] Dren T, Millange F, Frey G, et al. J. Phys. Chem. C, 2007, 111(42):15350-15356

    26. [26]

      [26] Wilmer C E, Leaf M, Lee C Y, et al. Nat. Chem., 2011,4(2): 83-89

  • 加载中
    1. [1]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    2. [2]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

    8. [8]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    10. [10]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    11. [11]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    13. [13]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    14. [14]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    15. [15]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

Metrics
  • PDF Downloads(0)
  • Abstract views(2201)
  • HTML views(420)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return