Citation: ZENG Jing-Hui, SONG Jiang-Feng, YANG Yuan-You, HOU Qin, LUO De-Li, LIAO Jia-Li, YANG Ji-Jun, TANG Jun, LIU Ning, WANG Dong-Qi. Simulation of Hydrogen-Deuterium Exchange Behavior in the Sphere Pd-Filled Column[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1626-1632. doi: 10.3969/j.issn.1001-4861.2013.00.301 shu

Simulation of Hydrogen-Deuterium Exchange Behavior in the Sphere Pd-Filled Column

  • Received Date: 21 January 2013
    Available Online: 28 May 2013

    Fund Project: 国际磁约束聚变能计划专项(No.2010GB112001) (No.2010GB112001)特殊学科点 (No.J1210004)资助项目。 (No.J1210004)

  • A hydrogen-deuterium exchange reaction model was constructed by combining the Sphere Particle Exchange Model (SPEM) and the Gas-Solid Surface Exchange Model, and programmed in terms of numerical algorithm using FORTRAN language to simulate the H-D exchange reaction in a column filled with palladium (Pd) particles. This model was then used to study the influence of the properties of Pd material, including its size and density in the column, the length of the column, the velocity of the gas flow and temperature, etc., on the exchange reaction. The calculation show that low flow velocity, high density and small size of Pd particles, longer column and higher temperature may accelerate the exchange reaction of D by H, while the diameter of column has no effect when the diffusion model used here holds.
  • 加载中
    1. [1]

      [1] DENG Xiao-Jun(邓潇君), LUO De-Li(罗德礼), QIAN Xiao-Jing(钱晓静). J. Isotopes(Tongweisu), 2010,23(1):53-58

    2. [2]

      [2] QIAN Xiao-Jing(钱晓静), XIONG Yi-Fu(熊义富), HUANG Guo-Qiang(黄国强), et al. Atom. Energ. Sci. Tech.(Yuanzineng Kexue Jishu), 2006,40(2):212-217

    3. [3]

      [3] TANG Tao(唐涛). Thesis for the Masterate of China Academy of Engineering Physics(中国工程物理研究院硕士论文). 2003.

    4. [4]

      [4] Fukada S, Fuchinoue K, Nishikawa M. J. Nucl. Sci. Technol., 1995,32(6):556-564

    5. [5]

      [5] Fukada S, Nishikawa M. Fusion Eng. Des., 1998,39(40):995-999

    6. [6]

      [6] Fukada S. Separ. Sci. Technol., 1999,34(14):2699-2721

    7. [7]

      [7] Fukada S, Fujiwara H. Separ. Sci. Technol., 1999,34(11): 2235-2242

    8. [8]

      [8] Fukada S, Fujiwara H. J. Chromatogr. A, 2000,898(1):125-131

    9. [9]

      [9] Fujiwara H, Fukada S, Yamaguchi Y. Int. J. Hydrogen Energ., 2000,25(2):127-132

    10. [10]

      [10] Ducret D, Ballanger A, Steimetz J, et al. Fusion Eng. Des., 2001,58-59(21):417-421

    11. [11]

      [11] QIAN Xiao-Jing(钱晓静), LUO De-Li(罗德礼), HUANG Guo-Qiang(黄国强), et al. J. Nucl. Radiochem.(Hehuaxue Yu Fangshehuaxue), 2007,29(2):65-70

    12. [12]

      [12] Heung L, Sessions H, Xiao X, et al. Fusion Sci. Technol., 2009,56(4):1471-1475

    13. [13]

      [13] Foltz G, Melius C. J. Catal., 1987,108(2):409-425

    14. [14]

      [14] LI Gan(李赣), LU Guang-Da(陆光达), JIANG Guo-Qiang(蒋 国强). J. Nucl. Radiochem.(Hehuaxue Yu Fangshehuaxue), 2000,22(4):200-206

    15. [15]

      [15] LU Guang-Da(陆光达), LI Gan(李赣), JIANG Guo-Qiang(蒋 国强). Chin. J. Nucl. Sci. Eng.(Hekexue Yu Gongcheng), 2001,21(4):356-362

    16. [16]

      [16] CHEN Hu-Chi(陈虎翅), LU Guang-Da(陆光达), LI Gan(李 赣). Chin. J. Rare Metals(Xiyou Jinshu), 2003,27(6):742-746

    17. [17]

      [17] James S, Hamilton J, Wolfer W. Chem. Eng. Sci., 2012,68 (1):250-257

    18. [18]

      [18] Majorowski S, Baranowski B. J. Phys. Chem. Solids, 1982, 43(12):1119-1127

    19. [19]

      [19] Wicke E, Nernst G. Ber. Bunsenges. Phys. Chem., 1964,68: 224-235

    20. [20]

      [20] Sichuan University(四川大学). CN Patent, 2013SR024463. 2012-08-23.

    21. [21]

      [21] Carstens D, Encinias P. J. Less-Common Met., 1991,172-174(3):1331-1337

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    5. [5]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    6. [6]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    7. [7]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(0)
  • Abstract views(236)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return