Citation: WU Xia, WANG Lu-Xiang, LIU Lang, JIA Dian-Zeng. Controllable Preparation of Carbon Nanotubes from Xinjiang Coal[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1842-1848. doi: 10.3969/j.issn.1001-4861.2013.00.292 shu

Controllable Preparation of Carbon Nanotubes from Xinjiang Coal

  • Received Date: 7 April 2013
    Available Online: 14 May 2013

    Fund Project: 国家自然科学基金(No.U1203292) (No.U1203292)新疆自治区高技术项目(No.201016118) (No.201016118)教育部“长江学者和创新团队发展计划”(No.IRT1081)资助 项目。 (No.IRT1081)

  • Carbon nanotubes (CNTs) were synthesized by direct current arc discharge using three different types of coal (Dahuangshan, Heishan, Kuche) from Xinjiang, and the effects of coal species, currents, pressures, catalysts and atmospheres on the yield and morphologies of CNTs were investigated. The starting material, i.e., coal, was investigated by thermogravimetry and X-ray diffraction. In addition, the composition of the three types of coal was tested by industrial analysis and elemental analysis. The CNT samples obtained under different synthesis conditions were studied by field-emission scanning electron microscopy, high resolution transmission electron microscopy and Raman spectroscopy. Based on the analyses of different starting coal, catalysts and synthesis atmospheres, it was found that the highest yield of CNTs was obtained using Kuche coal with 12% mixture of the nickel and ferrous sulfide, and the CNTs obtained under argon have a more uniform structure. The average diameter of CNTs obtained under argon, nitrogen and helium decrease successively. The results showed that the structure and the diameter distribution of CNTs varied with different gases used during synthesis. The mechanism on the formation of different structural CNTs was discussed.
  • 加载中
    1. [1]

      [1] JI Li-Jun(纪立军), YE Chao(叶超), LIANG Ji(梁吉). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23,(12): 2007-2012

    2. [2]

      [2] Fan S S, Chapline M G, Franklin N R, et al. Science, 1999,283:512-514

    3. [3]

      [3] Saito Y, Hamaguchi K, Hata K, et al. Ultramicroscopy, 1998, 73:1-6

    4. [4]

      [4] MI Hong-Yu(米红宇), ZHANG Xiao-Gang(张校刚), LÜ Xin-Mei(吕新美), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23,(1):159-163

    5. [5]

      [5] YE Mao(叶茂), ZHOU Zhen(周震), BIAN Xi-Kui(卞锡奎), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006, 22,(7):1307-1311

    6. [6]

      [6] WANG Gui-Xin(王贵欣), QU Mei-Zhen(瞿美臻), CHEN Li (陈利), et al. Chemistry(Huaxue Tongbao), 2004,67(3):185-191,197

    7. [7]

      [7] CHEN Li-Juan(陈丽娟). Chemistry Research(Huaxue Yanjiu), 2010,21(5):103-106

    8. [8]

      [8] WANG Sheng-Gao(王升高), WANG Jian-Hua(汪建华), ZHAO Jian-Xiu(赵建修), et al. Chinese J. Ionrg. Chem. (Wuji Huaxue Xuebao), 2005,21(9):1367-1370

    9. [9]

      [9] Dillon A C, Jones K M, Bekkedahl T A, et al. Nature, 1997, 386:377-379

    10. [10]

      [10] Kowalczyk P, Brualla L, Zywociński A, et al. J. Phys. Chem. C, 2007,111:5250-5257

    11. [11]

      [11] Cui S, Scharff P, Spiess L, et al. Carbon, 2002,41:1645-1687

    12. [12]

      [12] Du F, Ma Y F, Lü X, et al. Carbon, 2006,44:1298-1352

    13. [13]

      [13] Wang M, Wang X Q, Li Z H, et al. Mater. Chem. Phys., 2006,97:243246

    14. [14]

      [14] Sun X, Bao W R, Lü Y K, et al. Mater. Lett., 2007,61:3956 3958

    15. [15]

      [15] See C H, Harris A T. Ind. Eng. Chem. Res., 2007,46:997-1012

    16. [16]

      [16] Bronikowski M J. Carbon, 2006,44:2822-2832

    17. [17]

      [17] ZANG Peng-Yuan(臧鹏远), XUE Hua(薛华), CAI Jing (蔡婧), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27,(8):1625-1629

    18. [18]

      [18] Kim K S, Moradian A, Mostaghimi J, et al. Nano Res., 2009, 2:800-817

    19. [19]

      [19] Williams K A, Tachibana M, Allen J L, et al. Chem. Phys. Lett., 1999,310:3137

    20. [20]

      [20] LI Zhen-Tao(李振涛), DONG Qiang(董强), LIU Hong(刘红). CIESC J. (Huagong Xuebao), 2010,61,(4):1040-1046

    21. [21]

      [21] Saito Y, Okuda M, Koyama T. Surf. Rev. Lett., 1996,3,(1):863

    22. [22]

      [22] Liu C, Cong H T, Wei Y L. et al. Proceedings of the Conference on Carbon, 99 (Amer. Carbon. Soc.). 1999:84-85

    23. [23]

      [23] SONG Tian-You(宋天佑), CHENG Peng(程鹏), WANG Xing-Qiao(王杏乔). Inorganic Chemistry: Vol.1 (无机化学: 上册). Beijing: High Education Press, 2004:140142

    24. [24]

      [24] Iijima S. Topics Appl. Phys., 2001,80:55-81

    25. [25]

      [25] Satio Y. Carbon, 1995,33,(7):979-988

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    9. [9]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    12. [12]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    13. [13]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    14. [14]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    15. [15]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    16. [16]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(0)
  • Abstract views(423)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return