Citation: FENG Hao, DU Jing, HAN Xiao-Peng, CHENG Fang-Yi, CHEN Jun. Sol-Gel Synthesis of Perovskite La1-xCaxMnO3(x=0~0.4) Nanoparticles for Electrocatalytic Oxygen Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1617-1625. doi: 10.3969/j.issn.1001-4861.2013.00.286 shu

Sol-Gel Synthesis of Perovskite La1-xCaxMnO3(x=0~0.4) Nanoparticles for Electrocatalytic Oxygen Reduction

  • Received Date: 3 April 2013
    Available Online: 10 May 2013

    Fund Project: 国家自然科学基金(No.21231005) (No.21231005)863课题(2011AA050704) (2011AA050704)973项目(2011CB935900) (2011CB935900)

  • In this work, a series of La1-xCaxMnO3 perovskite nanoparticles were prepared through a sol-gel method and investigated as catalysts for the oxygen reduction reaction (ORR). The XRD, SEM and TEM characterization demonstrated high crystallinity of the synthesized particles having diameters of about 40 nm. The crystal structure was determined by Rietveld refinement, indicating variation of the lattice parameters with the amount of substituted Ca. The electrocatalytic properties of the samples were studied using rotating-disk and rotating ring-disk electrode techniques in KOH aqueous solution. Investigations on the composition-performance relationship of La1-xCaxMnO3 perovskites revealed that mixed Mn valence and medium Mn-O bond length favored the ORR electrocatalysis. Among the La1-xCaxMnO3 series, La0.7Ca0.3MnO3 exhibited outstanding ORR activity, enabled an apparent 4-electron pathway and showed superior durability compared to the benchmark carbon-supported Pt nanoparticles. Furthermore, metal-air cells assembled with La0.7Ca0.3MnO3 could deliver high charge and discharge capacity with flat plateaus. The considerable catalytic performances of La1-xCaxMnO3 nanoparticles indicate their promising application as low-cost and high-abundance catalysts in alkaline fuel cells and metal-air batteries.
  • 加载中
    1. [1]

      [1] Bruce P G, Freunberger S A, Hardwick L J, et al. Nat. Mater., 2012,11:19-29

    2. [2]

      [2] Suntivich J, Gasteiger H A, Yabuuchi N, et al. Nat. Chem., 2011,3:546-550

    3. [3]

      [3] Cheng F Y, Chen J. Chem. Soc. Rev., 2012,41:2172-2192

    4. [4]

      [4] Zhao Y L, Xu L, Mai L Q, et al. Proc. Natl. Acad. Sci. U.S. A, 2012,109:19569-19574

    5. [5]

      [5] Neburchilov V, Wang H J, Martin J J, et al. J. Power Sources, 2010,195:1271-1291

    6. [6]

      [6] CHENG Fang-Yi(程方益), CHEN Jun(陈军). Acta Chim. Sin. (Huaxue Xuebao), 2013,71:473-477

    7. [7]

      [7] HAN Hong-Tao(韩红涛), TANG You-Gen(唐有根). Chin. J. Power Sources (Dianyuan Jishu), 2006,30:454-457

    8. [8]

      [8] Sunarso J, Torriero A A, Zhou W, et al. J. Phys. Chem. C, 2012,116:5827-5834

    9. [9]

      [9] ZHANG Zhong-Lin(张忠林), YUAN Juan-Ning(员娟宁), SUN Yan-Ping(孙彦平), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,27(12):2413-2418

    10. [10]

      [10] Liang Y Y, Wang H L, Zhou J G, e al. J. Am. Chem. Soc., 2012,134:3517-3523

    11. [11]

      [11] Benbow E M, Kelly S P, Zhao L, et al. J. Phys. Chem. C, 2011,115:22009-22017

    12. [12]

      [12] Cheng F Y, Shen J, Peng B, et al. Nat. Chem., 2011,3:79-84

    13. [13]

      [13] Oh S H, Nazar L F. Adv. Energy Mater., 2012,2:903-910

    14. [14]

      [14] Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. Science, 2008,321(5889):671-674

    15. [15]

      [15] Suntivich J, Gasteiger H A, Yabuuchi N, et al. J. Electrochem. Soc., 2010,157:B1263-B1268

    16. [16]

      [16] Débart A, Paterson A J, Bao J, et al. Angew. Chem. Int. Ed., 2008,47:4521-4524

    17. [17]

      [17] Cheng F Y, Chen J. Nat. Chem., 2012,4:962-963

    18. [18]

      [18] LI Dan-Lin(李丹林), LI Shang(李赏), PAN Mu(潘牧). J. Hubei Univ. (Hubei Daxue Xuebao), 2011,33:98-102

    19. [19]

      [19] LIN Sheng-Ling(林生岭), XU Shao-Fen(徐绍芬), CHENG Ye(成烨), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(11):1637-1642

    20. [20]

      [20] HU He-He(胡合合), LUO Yong-Chun(罗永春), KANG Long (康龙), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(10):2130-2138

    21. [21]

      [21] Hyodo T, Hayashi M, Miura N, et al. J. Electrochem. Soc., 1996,143:L266-L267

    22. [22]

      [22] Niu Y J, Zhou W, Sunarso J, et al. J. Mater. Chem., 2010, 20:9619-9622

    23. [23]

      [23] MIAO Jian-Wen(缪建文), FAN Yi-Ning(范以宁), JIN Yong-Shu(金永漱), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,19(12):1361-1365

    24. [24]

      [24] Han X P, Zhang T R, Du J, et al. Chem. Sci., 2013,4:368-376

    25. [25]

      [25] Du J, Pan Y D, Zhang T R, et al. J. Mater. Chem., 2012,22: 15812-15818

    26. [26]

      [26] Zhu J, Su Y, Cheng F Y, et al. J. Power Sources, 2007,166: 331-336 [27] Toby B H. J. Appl. Cryst., 2001,34:210-213

    27. [27]

      [28] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 2000

    28. [28]

      [29] El-Deab M S, Ohsaka T. Angew Chem Int Ed, 2006,45: 5963-5966

    29. [29]

      [30] Li X X, Qu W, Zhang, J J, et al. J. Electrochem. Soc., 2011, 158:A597-A604

    30. [30]

      [31] Cheng F Y, Shen J, Ji W Q, et al. ACS Appl. Mater. Interfaces, 2009,1:460-466

    31. [31]

      [32] ZHANG Huan(章欢), DAI Yu(戴煜), HU Xiao-Hong(胡晓宏), et al. Sci. Sin. Chim. (Zhongguo Kexue: Huaxue), 2011,41 (12):1784-1790

    32. [32]

      [33] Xu J J, Xu D, Wang Z L, et al. Angew. Chem. Int. Ed., 2013,52:3887-3890

    33. [33]

      [34] DiCastro V, Polzonetti G, Contini G, et al. Surf. Interface. Anal., 1990,16:571-574

    34. [34]

      [35] Oku M, Hirokawa K. J. Electron. Spectrosc. Relat. Phenom., 1976,8:475-481

  • 加载中
    1. [1]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    7. [7]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(0)
  • Abstract views(194)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return