Citation: FENG Hao, DU Jing, HAN Xiao-Peng, CHENG Fang-Yi, CHEN Jun. Sol-Gel Synthesis of Perovskite La1-xCaxMnO3(x=0~0.4) Nanoparticles for Electrocatalytic Oxygen Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1617-1625. doi: 10.3969/j.issn.1001-4861.2013.00.286 shu

Sol-Gel Synthesis of Perovskite La1-xCaxMnO3(x=0~0.4) Nanoparticles for Electrocatalytic Oxygen Reduction

  • Received Date: 3 April 2013
    Available Online: 10 May 2013

    Fund Project: 国家自然科学基金(No.21231005) (No.21231005)863课题(2011AA050704) (2011AA050704)973项目(2011CB935900) (2011CB935900)

  • In this work, a series of La1-xCaxMnO3 perovskite nanoparticles were prepared through a sol-gel method and investigated as catalysts for the oxygen reduction reaction (ORR). The XRD, SEM and TEM characterization demonstrated high crystallinity of the synthesized particles having diameters of about 40 nm. The crystal structure was determined by Rietveld refinement, indicating variation of the lattice parameters with the amount of substituted Ca. The electrocatalytic properties of the samples were studied using rotating-disk and rotating ring-disk electrode techniques in KOH aqueous solution. Investigations on the composition-performance relationship of La1-xCaxMnO3 perovskites revealed that mixed Mn valence and medium Mn-O bond length favored the ORR electrocatalysis. Among the La1-xCaxMnO3 series, La0.7Ca0.3MnO3 exhibited outstanding ORR activity, enabled an apparent 4-electron pathway and showed superior durability compared to the benchmark carbon-supported Pt nanoparticles. Furthermore, metal-air cells assembled with La0.7Ca0.3MnO3 could deliver high charge and discharge capacity with flat plateaus. The considerable catalytic performances of La1-xCaxMnO3 nanoparticles indicate their promising application as low-cost and high-abundance catalysts in alkaline fuel cells and metal-air batteries.
  • 加载中
    1. [1]

      [1] Bruce P G, Freunberger S A, Hardwick L J, et al. Nat. Mater., 2012,11:19-29

    2. [2]

      [2] Suntivich J, Gasteiger H A, Yabuuchi N, et al. Nat. Chem., 2011,3:546-550

    3. [3]

      [3] Cheng F Y, Chen J. Chem. Soc. Rev., 2012,41:2172-2192

    4. [4]

      [4] Zhao Y L, Xu L, Mai L Q, et al. Proc. Natl. Acad. Sci. U.S. A, 2012,109:19569-19574

    5. [5]

      [5] Neburchilov V, Wang H J, Martin J J, et al. J. Power Sources, 2010,195:1271-1291

    6. [6]

      [6] CHENG Fang-Yi(程方益), CHEN Jun(陈军). Acta Chim. Sin. (Huaxue Xuebao), 2013,71:473-477

    7. [7]

      [7] HAN Hong-Tao(韩红涛), TANG You-Gen(唐有根). Chin. J. Power Sources (Dianyuan Jishu), 2006,30:454-457

    8. [8]

      [8] Sunarso J, Torriero A A, Zhou W, et al. J. Phys. Chem. C, 2012,116:5827-5834

    9. [9]

      [9] ZHANG Zhong-Lin(张忠林), YUAN Juan-Ning(员娟宁), SUN Yan-Ping(孙彦平), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,27(12):2413-2418

    10. [10]

      [10] Liang Y Y, Wang H L, Zhou J G, e al. J. Am. Chem. Soc., 2012,134:3517-3523

    11. [11]

      [11] Benbow E M, Kelly S P, Zhao L, et al. J. Phys. Chem. C, 2011,115:22009-22017

    12. [12]

      [12] Cheng F Y, Shen J, Peng B, et al. Nat. Chem., 2011,3:79-84

    13. [13]

      [13] Oh S H, Nazar L F. Adv. Energy Mater., 2012,2:903-910

    14. [14]

      [14] Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. Science, 2008,321(5889):671-674

    15. [15]

      [15] Suntivich J, Gasteiger H A, Yabuuchi N, et al. J. Electrochem. Soc., 2010,157:B1263-B1268

    16. [16]

      [16] Débart A, Paterson A J, Bao J, et al. Angew. Chem. Int. Ed., 2008,47:4521-4524

    17. [17]

      [17] Cheng F Y, Chen J. Nat. Chem., 2012,4:962-963

    18. [18]

      [18] LI Dan-Lin(李丹林), LI Shang(李赏), PAN Mu(潘牧). J. Hubei Univ. (Hubei Daxue Xuebao), 2011,33:98-102

    19. [19]

      [19] LIN Sheng-Ling(林生岭), XU Shao-Fen(徐绍芬), CHENG Ye(成烨), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(11):1637-1642

    20. [20]

      [20] HU He-He(胡合合), LUO Yong-Chun(罗永春), KANG Long (康龙), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(10):2130-2138

    21. [21]

      [21] Hyodo T, Hayashi M, Miura N, et al. J. Electrochem. Soc., 1996,143:L266-L267

    22. [22]

      [22] Niu Y J, Zhou W, Sunarso J, et al. J. Mater. Chem., 2010, 20:9619-9622

    23. [23]

      [23] MIAO Jian-Wen(缪建文), FAN Yi-Ning(范以宁), JIN Yong-Shu(金永漱), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,19(12):1361-1365

    24. [24]

      [24] Han X P, Zhang T R, Du J, et al. Chem. Sci., 2013,4:368-376

    25. [25]

      [25] Du J, Pan Y D, Zhang T R, et al. J. Mater. Chem., 2012,22: 15812-15818

    26. [26]

      [26] Zhu J, Su Y, Cheng F Y, et al. J. Power Sources, 2007,166: 331-336 [27] Toby B H. J. Appl. Cryst., 2001,34:210-213

    27. [27]

      [28] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 2000

    28. [28]

      [29] El-Deab M S, Ohsaka T. Angew Chem Int Ed, 2006,45: 5963-5966

    29. [29]

      [30] Li X X, Qu W, Zhang, J J, et al. J. Electrochem. Soc., 2011, 158:A597-A604

    30. [30]

      [31] Cheng F Y, Shen J, Ji W Q, et al. ACS Appl. Mater. Interfaces, 2009,1:460-466

    31. [31]

      [32] ZHANG Huan(章欢), DAI Yu(戴煜), HU Xiao-Hong(胡晓宏), et al. Sci. Sin. Chim. (Zhongguo Kexue: Huaxue), 2011,41 (12):1784-1790

    32. [32]

      [33] Xu J J, Xu D, Wang Z L, et al. Angew. Chem. Int. Ed., 2013,52:3887-3890

    33. [33]

      [34] DiCastro V, Polzonetti G, Contini G, et al. Surf. Interface. Anal., 1990,16:571-574

    34. [34]

      [35] Oku M, Hirokawa K. J. Electron. Spectrosc. Relat. Phenom., 1976,8:475-481

  • 加载中
    1. [1]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    20. [20]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

Metrics
  • PDF Downloads(0)
  • Abstract views(241)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return