Citation:
XUE Yun, WANG Qian, YAN Yong-De, CHEN Lang, ZHANG Mi-Lin, ZHANG Zhi-Jian. Direct Electrochemical Reduction of Sm2O3 and Formation of Al-Sm Alloys in LiCl-KCl-AlCl3 Melts[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(9): 1947-1951.
doi:
10.3969/j.issn.1001-4861.2013.00.282
-
Direct electrochemical reduction of Sm2O3 and formation of Al-Sm alloys were investigated in LiCl-KCl melts by using additive AlCl3 at 803 K. The electrochemical behaviors of Sm2O3 and SmCl3 raw material in LiCl-KCl-AlCl3 melts were characterized by cyclic voltammetry and square wave voltammetry. Galvanostatic electrolysis was carried out to extract Sm element from LiCl-KCl-AlCl3 melts, and the deposits were characterized by X-ray diffraction (XRD). The numbers and potential regions of the peaks obtained from the two systems are almost the same, indicating that the Sm2O3 is chloridized by AlCl3 in the LiCl-KCl melt. The chronopotentiometry result indicates that the coreduction of Al and Sm occurs when the cathodic current is more negative than-139.8 mA·cm-2. Al-Sm alloys with different phases can be obtained by adjusting the concentration of AlCl3 and Sm2O3.
-
-
-
[1]
[1] Laidler J J, Battles J E, Miller W E, et al. Nucl. Energy, 1997,31(1/2):131-140
-
[2]
[2] Kwon S W, Shim J B, Kim E H, et al. J. Ind. Eng. Chem., 2006,12(5):802-805
-
[3]
[3] Gibilaro M, Massot L, Chamelot P, et al. J. Nucl. Mater., 2008,382:39-45
-
[4]
[4] Gibilaro M, Massot L, Chamelot P, et al. Electrochim. Acta, 2009,54:5300-5306
-
[5]
[5] Taxil P, Massot L, Nourry C, et al. J. Fluor. Chem., 2009, 130:94-101
-
[6]
[6] Marsden K C, Pesic B. J. Electrochem. Soc., 2011,158(6): F111-F120
-
[7]
[7] Cordoba G, Caravaca C. J. Electroanal. Chem., 2004,572: 145-151
-
[8]
[8] Kushkhov K B, Vindizheva M K, Karashaeva R A, et al. Russ. J. Electrochem., 2010,46(6):691-701
-
[9]
[9] Massot L, Chamelot P, Taxil P, Electrochim. Acta, 2005,50: 5510-5517
-
[10]
[10] Castrillejo Y, Fernández P, Medina J, et al. Electroanalysis, 2011,23(1):222-236
-
[11]
[11] Castrillejo Y, Fernández P, Medina J, et al. Electrochim. Acta, 2011,56:8638-8644
-
[12]
[12] Iida T, Nohira T, Ito Y. Electrochim. Acta, 2003,48:901-906
-
[13]
[13] Iida T, Nohira T, Ito Y. Electrochim. Acta, 2003,48:2517-2521
-
[14]
[14] Iida T, Nohira T, Ito Y. Electrochim. Acta, 2001,46:2537-2544
-
[15]
[15] Han W, Tian Y, Zhang M L, et al. J. Rare Earth, 2009,27 (6):1046-1050
-
[16]
[16] Han W, Wang F L, Tian Y, et al. Metall. Mater. Trans. B, 2011,42(12):1376-1382
-
[17]
[17] Papatheodorou G N, Kucera G H. Inorg. Chem., 1979,18(2): 385-389
-
[18]
[18] Tang H, Yan Y D, Zhang M L, et al. Electrochim. Acta, 2013,88:457-462
-
[1]
-
-
-
[1]
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
-
[2]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[3]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[4]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[5]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[6]
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
-
[7]
Tinghui AN , Dong XIANG , Jiaqi LI , Jiawei WANG , Shuming YU , Nan WANG , Kedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412
-
[8]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[9]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[10]
Feng Lin , Zhongxin Jin , Caiying Li , Cheng Shao , Yang Xu , Fangze Li , Siqi Liu , Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017
-
[11]
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
-
[12]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[13]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[14]
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
-
[15]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[16]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[17]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[18]
Zeqiu Chen , Limiao Cai , Jie Guan , Zhanyang Li , Hao Wang , Yaoguang Guo , Xingtao Xu , Likun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089
-
[19]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[20]
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(684)
- HTML views(115)