Citation: WANG Peng, XUE Zhao-Teng, MA Jing-Hong, KANG Yu-Hong, LI Rui-Feng. Zeolite LTA with Intracrystal Mesopores Constructed by Bond-Blocking Principle[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1777-1786. doi: 10.3969/j.issn.1001-4861.2013.00.269 shu

Zeolite LTA with Intracrystal Mesopores Constructed by Bond-Blocking Principle

  • Received Date: 22 March 2013
    Available Online: 21 April 2013

    Fund Project: 国家自然科学基金(No.50872087)资助项目。 (No.50872087)

  • Zeolite LTA with intracrystal mesopores was built using four different organic functionized SiO2 as configuration units. The effects of the synthesis conditions, including that of the alkalinity, the Si/Al molar ratio of synthesis mixture and crystallization time, on the growth process of the mesostructured zeolite crystals were investigated. Phenylaminopropyl-trimethoxysilane is the best candidate to create intracrystal mesopores in zeolite LTA crystals. The growth process of the mesostructured zeolite crystals was studied. Mesoporous size of the zeolite LTA can be modulated by selecting different kinds of organosilanes. Within a certain range, the external surface area and the mesoporous volume increase with the increasing organic function degree of the silica source. The results confirm that the synthesis method by the bond-blocking principle is an effective route to prepare zeolite LTA with tunable intracrystalline mesopores.
  • 加载中
    1. [1]

      [1] Corma A. Chem. Rev., 1997,97:2373-2420

    2. [2]

      [2] Meng X, Nawaz F, Xiao F S. Nano Today, 2009,4:292-301

    3. [3]

      [3] Tao Y, Kanoh H, Kaneko K, et al. Chem. Rev., 2006,106: 896-910

    4. [4]

      [4] Pérez-Ramírez J, Christensen C H, Egeblad K, et al. Chem. Soc. Rev., 2008,37:2530-2542

    5. [5]

      [5] Kresten E, Christina H C, Marina K, et al. Chem. Mater., 2008,20:946-960

    6. [6]

      [6] Sander Van D, Andries H J, Johannes H B, et al. Catal. Rev., 2003,45:297-319

    7. [7]

      [7] Lopez-Orozco S, Inayat A, Schwab A, et al. Adv. Mater., 2011,23:2602-2615

    8. [8]

      [8] Le H, Zhou J, Shi J, Chem. Commun., 2011,47:10536-10547

    9. [9]

      [9] Pérez-Ramírez J, Abello S, Bonilla A, et al. Adv. Funct. Mater., 2009,19:164-172

    10. [10]

      [10] Corma A, Fornes V, Pergher S B, et al. Nature, 1998,396: 353-356

    11. [11]

      [11] Groen J C, Moulijn J A, Pérez-Ramírez J. J. Mater. Chem., 2006,16:2121-2131

    12. [12]

      [12] Groen J C, Abello S, Villaescusa L A, et al. Micropor. Mesopor. Mat., 2008,114:93-102

    13. [13]

      [13] Danny V, Pérez-Ramírez J. Chem.-Eur. J., 2011,17:1137-1147

    14. [14]

      [14] Groen J C, Hamminga G M, Moulijn J A, et al. Phys. Chem. Chem. Phys., 2007,9:4822-4830

    15. [15]

      [15] Serrano D P, Aguado J, Escola J M, et al. Chem. Mater., 2006,18:2462-2464

    16. [16]

      [16] Larsen S C. J. Phys. Chem. C, 2007,111:18464-18474

    17. [17]

      [17] Rakoczy R A, Traa Y. Micropor. Mesopor. Mat., 2003,60: 69-78

    18. [18]

      [18] Lubomira T, Valtchev V P. Chem. Mater., 2005,17:2494-2513

    19. [19]

      [19] Jacobsen C J H, Madsen C, Houzvicka J, et al. J. Am. Chem. Soc., 2000,122:7116-7117

    20. [20]

      [20] Schmidt I, Boisen A, Gustavsson E, et al. Chem. Mater., 2001,13(12):4416-4418

    21. [21]

      [21] Zhu H, Liu Z, Wang Y, et al. Chem. Mater., 2008,20:1134-1139

    22. [22]

      [22] Tao Y, Kanoh H, Kaneko K. J. Phys. Chem. B, 2003,107: 10974-10976

    23. [23]

      [23] Choi M, Cho H S, Srivastava R, et al. Nat. Mater., 2006,5: 718-723

    24. [24]

      [24] Cho K, Cho H S, Menorval De L C, et al. Chem. Mater., 2009,21:5664-5673

    25. [25]

      [25] Xue Z, Ma J, Hao W, et al. J. Mater. Chem., 2012,22:2532-2538

    26. [26]

      [26] Xue Z, Ma J, Zhang T, et al. Mater. Lett., 2012,68:1-3

    27. [27]

      [27] Xue Z, Zhang T, Ma J, et al. Micropor. Mesopor. Mat., 2012,151:271-276

    28. [28]

      [28] Katsuyuki T, Christopher W J, Davis M E. Micropor. Mesopor. Mat., 1999,29:339-349

    29. [29]

      [29] Christopher W J, Katsuyuki T, Davis M E. Micropor. Mesopor. Mat., 1999,33:223-240

  • 加载中
    1. [1]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    6. [6]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    7. [7]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    8. [8]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    9. [9]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    15. [15]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    16. [16]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    17. [17]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    19. [19]

      Yihong ShaoRongchen ShenSong WangShijie LiPeng ZhangXin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(0)
  • Abstract views(975)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return