Citation:
WANG Peng, XUE Zhao-Teng, MA Jing-Hong, KANG Yu-Hong, LI Rui-Feng. Zeolite LTA with Intracrystal Mesopores Constructed by Bond-Blocking Principle[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(9): 1777-1786.
doi:
10.3969/j.issn.1001-4861.2013.00.269
-
Zeolite LTA with intracrystal mesopores was built using four different organic functionized SiO2 as configuration units. The effects of the synthesis conditions, including that of the alkalinity, the Si/Al molar ratio of synthesis mixture and crystallization time, on the growth process of the mesostructured zeolite crystals were investigated. Phenylaminopropyl-trimethoxysilane is the best candidate to create intracrystal mesopores in zeolite LTA crystals. The growth process of the mesostructured zeolite crystals was studied. Mesoporous size of the zeolite LTA can be modulated by selecting different kinds of organosilanes. Within a certain range, the external surface area and the mesoporous volume increase with the increasing organic function degree of the silica source. The results confirm that the synthesis method by the bond-blocking principle is an effective route to prepare zeolite LTA with tunable intracrystalline mesopores.
-
-
-
[1]
[1] Corma A. Chem. Rev., 1997,97:2373-2420
-
[2]
[2] Meng X, Nawaz F, Xiao F S. Nano Today, 2009,4:292-301
-
[3]
[3] Tao Y, Kanoh H, Kaneko K, et al. Chem. Rev., 2006,106: 896-910
-
[4]
[4] Pérez-Ramírez J, Christensen C H, Egeblad K, et al. Chem. Soc. Rev., 2008,37:2530-2542
-
[5]
[5] Kresten E, Christina H C, Marina K, et al. Chem. Mater., 2008,20:946-960
-
[6]
[6] Sander Van D, Andries H J, Johannes H B, et al. Catal. Rev., 2003,45:297-319
-
[7]
[7] Lopez-Orozco S, Inayat A, Schwab A, et al. Adv. Mater., 2011,23:2602-2615
-
[8]
[8] Le H, Zhou J, Shi J, Chem. Commun., 2011,47:10536-10547
-
[9]
[9] Pérez-Ramírez J, Abello S, Bonilla A, et al. Adv. Funct. Mater., 2009,19:164-172
-
[10]
[10] Corma A, Fornes V, Pergher S B, et al. Nature, 1998,396: 353-356
-
[11]
[11] Groen J C, Moulijn J A, Pérez-Ramírez J. J. Mater. Chem., 2006,16:2121-2131
-
[12]
[12] Groen J C, Abello S, Villaescusa L A, et al. Micropor. Mesopor. Mat., 2008,114:93-102
-
[13]
[13] Danny V, Pérez-Ramírez J. Chem.-Eur. J., 2011,17:1137-1147
-
[14]
[14] Groen J C, Hamminga G M, Moulijn J A, et al. Phys. Chem. Chem. Phys., 2007,9:4822-4830
-
[15]
[15] Serrano D P, Aguado J, Escola J M, et al. Chem. Mater., 2006,18:2462-2464
-
[16]
[16] Larsen S C. J. Phys. Chem. C, 2007,111:18464-18474
-
[17]
[17] Rakoczy R A, Traa Y. Micropor. Mesopor. Mat., 2003,60: 69-78
-
[18]
[18] Lubomira T, Valtchev V P. Chem. Mater., 2005,17:2494-2513
-
[19]
[19] Jacobsen C J H, Madsen C, Houzvicka J, et al. J. Am. Chem. Soc., 2000,122:7116-7117
-
[20]
[20] Schmidt I, Boisen A, Gustavsson E, et al. Chem. Mater., 2001,13(12):4416-4418
-
[21]
[21] Zhu H, Liu Z, Wang Y, et al. Chem. Mater., 2008,20:1134-1139
-
[22]
[22] Tao Y, Kanoh H, Kaneko K. J. Phys. Chem. B, 2003,107: 10974-10976
-
[23]
[23] Choi M, Cho H S, Srivastava R, et al. Nat. Mater., 2006,5: 718-723
-
[24]
[24] Cho K, Cho H S, Menorval De L C, et al. Chem. Mater., 2009,21:5664-5673
-
[25]
[25] Xue Z, Ma J, Hao W, et al. J. Mater. Chem., 2012,22:2532-2538
-
[26]
[26] Xue Z, Ma J, Zhang T, et al. Mater. Lett., 2012,68:1-3
-
[27]
[27] Xue Z, Zhang T, Ma J, et al. Micropor. Mesopor. Mat., 2012,151:271-276
-
[28]
[28] Katsuyuki T, Christopher W J, Davis M E. Micropor. Mesopor. Mat., 1999,29:339-349
-
[29]
[29] Christopher W J, Katsuyuki T, Davis M E. Micropor. Mesopor. Mat., 1999,33:223-240
-
[1]
-
-
-
[1]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[2]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[3]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[4]
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
-
[5]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[6]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[7]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[8]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[9]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[10]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[11]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[12]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[13]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[14]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[15]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[16]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[17]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[18]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[19]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[20]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(788)
- HTML views(130)