Citation:
WANG Peng, XUE Zhao-Teng, MA Jing-Hong, KANG Yu-Hong, LI Rui-Feng. Zeolite LTA with Intracrystal Mesopores Constructed by Bond-Blocking Principle[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(9): 1777-1786.
doi:
10.3969/j.issn.1001-4861.2013.00.269
-
Zeolite LTA with intracrystal mesopores was built using four different organic functionized SiO2 as configuration units. The effects of the synthesis conditions, including that of the alkalinity, the Si/Al molar ratio of synthesis mixture and crystallization time, on the growth process of the mesostructured zeolite crystals were investigated. Phenylaminopropyl-trimethoxysilane is the best candidate to create intracrystal mesopores in zeolite LTA crystals. The growth process of the mesostructured zeolite crystals was studied. Mesoporous size of the zeolite LTA can be modulated by selecting different kinds of organosilanes. Within a certain range, the external surface area and the mesoporous volume increase with the increasing organic function degree of the silica source. The results confirm that the synthesis method by the bond-blocking principle is an effective route to prepare zeolite LTA with tunable intracrystalline mesopores.
-
-
-
[1]
[1] Corma A. Chem. Rev., 1997,97:2373-2420
-
[2]
[2] Meng X, Nawaz F, Xiao F S. Nano Today, 2009,4:292-301
-
[3]
[3] Tao Y, Kanoh H, Kaneko K, et al. Chem. Rev., 2006,106: 896-910
-
[4]
[4] Pérez-Ramírez J, Christensen C H, Egeblad K, et al. Chem. Soc. Rev., 2008,37:2530-2542
-
[5]
[5] Kresten E, Christina H C, Marina K, et al. Chem. Mater., 2008,20:946-960
-
[6]
[6] Sander Van D, Andries H J, Johannes H B, et al. Catal. Rev., 2003,45:297-319
-
[7]
[7] Lopez-Orozco S, Inayat A, Schwab A, et al. Adv. Mater., 2011,23:2602-2615
-
[8]
[8] Le H, Zhou J, Shi J, Chem. Commun., 2011,47:10536-10547
-
[9]
[9] Pérez-Ramírez J, Abello S, Bonilla A, et al. Adv. Funct. Mater., 2009,19:164-172
-
[10]
[10] Corma A, Fornes V, Pergher S B, et al. Nature, 1998,396: 353-356
-
[11]
[11] Groen J C, Moulijn J A, Pérez-Ramírez J. J. Mater. Chem., 2006,16:2121-2131
-
[12]
[12] Groen J C, Abello S, Villaescusa L A, et al. Micropor. Mesopor. Mat., 2008,114:93-102
-
[13]
[13] Danny V, Pérez-Ramírez J. Chem.-Eur. J., 2011,17:1137-1147
-
[14]
[14] Groen J C, Hamminga G M, Moulijn J A, et al. Phys. Chem. Chem. Phys., 2007,9:4822-4830
-
[15]
[15] Serrano D P, Aguado J, Escola J M, et al. Chem. Mater., 2006,18:2462-2464
-
[16]
[16] Larsen S C. J. Phys. Chem. C, 2007,111:18464-18474
-
[17]
[17] Rakoczy R A, Traa Y. Micropor. Mesopor. Mat., 2003,60: 69-78
-
[18]
[18] Lubomira T, Valtchev V P. Chem. Mater., 2005,17:2494-2513
-
[19]
[19] Jacobsen C J H, Madsen C, Houzvicka J, et al. J. Am. Chem. Soc., 2000,122:7116-7117
-
[20]
[20] Schmidt I, Boisen A, Gustavsson E, et al. Chem. Mater., 2001,13(12):4416-4418
-
[21]
[21] Zhu H, Liu Z, Wang Y, et al. Chem. Mater., 2008,20:1134-1139
-
[22]
[22] Tao Y, Kanoh H, Kaneko K. J. Phys. Chem. B, 2003,107: 10974-10976
-
[23]
[23] Choi M, Cho H S, Srivastava R, et al. Nat. Mater., 2006,5: 718-723
-
[24]
[24] Cho K, Cho H S, Menorval De L C, et al. Chem. Mater., 2009,21:5664-5673
-
[25]
[25] Xue Z, Ma J, Hao W, et al. J. Mater. Chem., 2012,22:2532-2538
-
[26]
[26] Xue Z, Ma J, Zhang T, et al. Mater. Lett., 2012,68:1-3
-
[27]
[27] Xue Z, Zhang T, Ma J, et al. Micropor. Mesopor. Mat., 2012,151:271-276
-
[28]
[28] Katsuyuki T, Christopher W J, Davis M E. Micropor. Mesopor. Mat., 1999,29:339-349
-
[29]
[29] Christopher W J, Katsuyuki T, Davis M E. Micropor. Mesopor. Mat., 1999,33:223-240
-
[1]
-
-
-
[1]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[2]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
-
[3]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[4]
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
-
[5]
Mian Wei , Chang Cheng , Bowen He , Bei Cheng , Kezhen Qi , Chuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-. doi: 10.1016/j.actphy.2025.100158
-
[6]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[7]
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[9]
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-. doi: 10.1016/j.actphy.2025.100152
-
[10]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[11]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[12]
Jiashuang Lu , Xiaoyang Xu , Youqing He , Mingyue Wu , Ruixin Shi , Wenfang Yu , Hang Lu , Ji Liu , Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143
-
[13]
Yerong Chen , Bingbin Yang , Xinglei He , Yuqi Lin , Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054
-
[14]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[15]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[16]
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
-
[17]
Yihong Shao , Rongchen Shen , Song Wang , Shijie Li , Peng Zhang , Xin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-. doi: 10.1016/j.actphy.2025.100176
-
[18]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[19]
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
-
[20]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(860)
- HTML views(136)