Citation: WANG Peng, XUE Zhao-Teng, MA Jing-Hong, KANG Yu-Hong, LI Rui-Feng. Zeolite LTA with Intracrystal Mesopores Constructed by Bond-Blocking Principle[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1777-1786. doi: 10.3969/j.issn.1001-4861.2013.00.269 shu

Zeolite LTA with Intracrystal Mesopores Constructed by Bond-Blocking Principle

  • Received Date: 22 March 2013
    Available Online: 21 April 2013

    Fund Project: 国家自然科学基金(No.50872087)资助项目。 (No.50872087)

  • Zeolite LTA with intracrystal mesopores was built using four different organic functionized SiO2 as configuration units. The effects of the synthesis conditions, including that of the alkalinity, the Si/Al molar ratio of synthesis mixture and crystallization time, on the growth process of the mesostructured zeolite crystals were investigated. Phenylaminopropyl-trimethoxysilane is the best candidate to create intracrystal mesopores in zeolite LTA crystals. The growth process of the mesostructured zeolite crystals was studied. Mesoporous size of the zeolite LTA can be modulated by selecting different kinds of organosilanes. Within a certain range, the external surface area and the mesoporous volume increase with the increasing organic function degree of the silica source. The results confirm that the synthesis method by the bond-blocking principle is an effective route to prepare zeolite LTA with tunable intracrystalline mesopores.
  • 加载中
    1. [1]

      [1] Corma A. Chem. Rev., 1997,97:2373-2420

    2. [2]

      [2] Meng X, Nawaz F, Xiao F S. Nano Today, 2009,4:292-301

    3. [3]

      [3] Tao Y, Kanoh H, Kaneko K, et al. Chem. Rev., 2006,106: 896-910

    4. [4]

      [4] Pérez-Ramírez J, Christensen C H, Egeblad K, et al. Chem. Soc. Rev., 2008,37:2530-2542

    5. [5]

      [5] Kresten E, Christina H C, Marina K, et al. Chem. Mater., 2008,20:946-960

    6. [6]

      [6] Sander Van D, Andries H J, Johannes H B, et al. Catal. Rev., 2003,45:297-319

    7. [7]

      [7] Lopez-Orozco S, Inayat A, Schwab A, et al. Adv. Mater., 2011,23:2602-2615

    8. [8]

      [8] Le H, Zhou J, Shi J, Chem. Commun., 2011,47:10536-10547

    9. [9]

      [9] Pérez-Ramírez J, Abello S, Bonilla A, et al. Adv. Funct. Mater., 2009,19:164-172

    10. [10]

      [10] Corma A, Fornes V, Pergher S B, et al. Nature, 1998,396: 353-356

    11. [11]

      [11] Groen J C, Moulijn J A, Pérez-Ramírez J. J. Mater. Chem., 2006,16:2121-2131

    12. [12]

      [12] Groen J C, Abello S, Villaescusa L A, et al. Micropor. Mesopor. Mat., 2008,114:93-102

    13. [13]

      [13] Danny V, Pérez-Ramírez J. Chem.-Eur. J., 2011,17:1137-1147

    14. [14]

      [14] Groen J C, Hamminga G M, Moulijn J A, et al. Phys. Chem. Chem. Phys., 2007,9:4822-4830

    15. [15]

      [15] Serrano D P, Aguado J, Escola J M, et al. Chem. Mater., 2006,18:2462-2464

    16. [16]

      [16] Larsen S C. J. Phys. Chem. C, 2007,111:18464-18474

    17. [17]

      [17] Rakoczy R A, Traa Y. Micropor. Mesopor. Mat., 2003,60: 69-78

    18. [18]

      [18] Lubomira T, Valtchev V P. Chem. Mater., 2005,17:2494-2513

    19. [19]

      [19] Jacobsen C J H, Madsen C, Houzvicka J, et al. J. Am. Chem. Soc., 2000,122:7116-7117

    20. [20]

      [20] Schmidt I, Boisen A, Gustavsson E, et al. Chem. Mater., 2001,13(12):4416-4418

    21. [21]

      [21] Zhu H, Liu Z, Wang Y, et al. Chem. Mater., 2008,20:1134-1139

    22. [22]

      [22] Tao Y, Kanoh H, Kaneko K. J. Phys. Chem. B, 2003,107: 10974-10976

    23. [23]

      [23] Choi M, Cho H S, Srivastava R, et al. Nat. Mater., 2006,5: 718-723

    24. [24]

      [24] Cho K, Cho H S, Menorval De L C, et al. Chem. Mater., 2009,21:5664-5673

    25. [25]

      [25] Xue Z, Ma J, Hao W, et al. J. Mater. Chem., 2012,22:2532-2538

    26. [26]

      [26] Xue Z, Ma J, Zhang T, et al. Mater. Lett., 2012,68:1-3

    27. [27]

      [27] Xue Z, Zhang T, Ma J, et al. Micropor. Mesopor. Mat., 2012,151:271-276

    28. [28]

      [28] Katsuyuki T, Christopher W J, Davis M E. Micropor. Mesopor. Mat., 1999,29:339-349

    29. [29]

      [29] Christopher W J, Katsuyuki T, Davis M E. Micropor. Mesopor. Mat., 1999,33:223-240

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(0)
  • Abstract views(725)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return