Citation: NIU Wen-Jun, SHEN Ya-Le, XU Jing, MA Liu-Lei, ZHAO Yu-Hua, SHEN Ming. Solvothermal Synthesis of Fe3O4 Nanospheres and Study on the Catalytic Degradation of Xylenol Orange[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2110-2118. doi: 10.3969/j.issn.1001-4861.2013.00.267 shu

Solvothermal Synthesis of Fe3O4 Nanospheres and Study on the Catalytic Degradation of Xylenol Orange

  • Received Date: 16 March 2013
    Available Online: 13 April 2013

    Fund Project: 国家自然科学基金(No.21273194) (No.21273194)江苏科技支撑计划-社会发展基金(No.BE2012705) (No.BE2012705)江苏省大学生实践创新训练计划基金(No.2012JSSPITP1372)资助项目。 (No.2012JSSPITP1372)

  • This paper reports a facile one-pot solvothermal approach for the preparation of 200nm-size Fe3O4 nanospheres with uniform morphology and monodispersity at 160 ℃. During this preparation process, FeCl3·6H2O was used as a single iron source, 1, 2-propylene glycol as solvent and reducing agent, urea as a homogeneous precipitant and maleic acid as an additive. The as-prepared Fe3O4 nanospheres not only had high magnetization saturation value and but also displayed high catalytic activity during the process of xylenol orange (XO) being oxidized degradation by hydrogen peroxide (H2O2). The measurement of UV-Vis spectra indicated that the decolorization rate of xylenol orange was only 6.2% with the oxidation of hydrogen peroxide without Fe3O4 catalyst. However, when Fe3O4 nanospheres were added to the solution, they showed excellent catalytic activity and the decolorization rate of XOcould be increased to 100% within 1h. The experiment also revealed that Fe3O4 nanospheres remained high catalytic activity and stability of material structure after recycling catalyzing of 10 times.
  • 加载中
    1. [1]

      [1] HONG Ruo-Yu(洪若瑜). Magnetic Nanoparticles and Magnetic Fluid(磁性纳米粒和磁性流体). Bejing: Chemical Industry Press, 2009. [2] Laurent S, Forge D, Port M, et al. Chem. Rev., 2008,108(6): 2064-2110 [3] Lu A H, Salabas E L, Schuth F. Angew. Chem. Int. Ed., 2007,46(8):1222-1244 [4] QIAO Rui-Rui(乔瑞瑞), ZENG Jian-Feng(曾剑峰), JIA Qiao -Juan(贾巧娟), et al. Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2012,28(5):993-1011 [5] Zhou J, Qiao X Y, Binks B P, et al. Langmuir, 2011,27: 3308-3316 [6] HE Guang-Yu(何光裕), ZHANG Yan(张艳), QIAN Mao- Gong(钱茂公), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2012,28(11):2306-2312 [7] Cheng W, Tang K B, Qi Y X, et al. J. Mater. Chem., 2010, 20:1799-1805 [8] JIAO Hua(焦华), YANG He-Qing(杨合情), SONG Yu-Zhe (宋玉哲), et al. Acta Chim. Sin. (Huaxue Xuebao), 2007,65 (20):2336-2342 [9] Deng H, Li X L, Peng Q, et al. Angew. Chem. Int. Ed., 2005,117:2842-2845 [10]Zhu M Y, Diao G W. J. Phys. Chem. C., 2011,115:1380-1387 [11]Xu Z C, Hou Y L, Sun S H. J. Am. Chem. Soc., 2007,129: 8698-8699 [12]LIU Bo-Jie(刘波洁), LI Xue-Yi(李学毅), CHEN Wei(陈威), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010, 26(3):784-788 [13]Ding H L, Zhang Y X, Wang S, et al. Chem. Mater., 2012, 24:4572-4580 [14]GAO Qian(高倩), ZHANG Ji-Lin(张吉林), HONG Guang-Yan(洪广言), et al. Chem. J. Chinese Universities (Gaodeng Xuexiao Huaxue Xuebao), 2011,32(3):552-559 [15]LU Ping(路苹), ZHANG Ji-Lin(张吉林), SUN De-Hui (孙德慧), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010,26(7):1177-1182 [16]Cao S W, Zhu Y J, Chang J. New Journal of Chemistry, 2008,32(9):1526-1530 [17]JI Jun-Hong(季俊红), JI Sheng-Fu(季生福), YANG Wei (杨伟), et al. Process. Chem. (Huaxue Jinzhan), 2010,22(8): 1566-1574 [18]McCarty P L, Bae J, Kim J. Environ. Sci. Technol., 2011,45: 7100-7106 [19]Ali I. Chem. Rev., 2012,112:5073-5091 [20]Brillas E, Sires I, Oturan M A. Chem. Rev., 2009,109(12): 6570-6631 [21]ZHANG Nai-Dong(张乃东), ZHENG Wei(郑威), Chem. Ind. Eng. Prog. (Huagong Jinzhan),2001,12:1-3 [22]Wang M Q, Wang N, Tang H Q, et al. Catal. Sci. Technol., 2012,2:187-194 [23]Wang N, Zhu L H, Wang M Q, et al. Ultrason. Sonochem., 2010(17):78-83 [24]Kaufman H S, Fankuchen I. Anal. Chem., 1949,21(1):24- 29 [25]Pinna N, Grancharov S, Beato P, et al. Chem. Mater., 2005, 17(11):3044-3049 [26]Sun G B, Dong B X, Cao M H, et al. Chem. Mater., 2011,23 (6):1587-1593

  • 加载中
    1. [1]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    2. [2]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    14. [14]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    15. [15]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(0)
  • Abstract views(257)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return