Citation:
SONG Ji-Mei, ZHAO Shao-Juan, WANG Yong, HU Hai-Qin, SHI Ya-Li, REN Ming-Song. ZnWO4 Nanoparticles as Catalyst for Synthesis of 5-Phenyl-1H-tetrazoles with High Activity[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(9): 1813-1818.
doi:
10.3969/j.issn.1001-4861.2013.00.258
-
ZnWO4 nanoparticles were synthesized by a facile solvothermal method. ZnWO4 nanoparticles were utilized as the catalyst for the formation of 5-phenyl-1H-tetrazoles from cyclo-addition reaction. The results show that the yield reaches 81% when 0.2 mmol catalyst is used at 110℃ for 10 h. However, the yield only reaches 43% and 65% for amorphous and nanorods ZnWO4, respectively. Clearly, ZnWO4 nanoparticles display superior catalytic performance. This high activity might be attributed to the larger surface area and more active sites that originate from the small size and good dispersibility of ZnWO4 nanoparticles. The unsaturated W atoms on the surface of ZnWO4 nanoparticles can activate the nitriles and enhance the reactivity for azides.
-
-
-
[1]
[1] Tsarevsky N V, Bernaerts K V, Dufour B, et al. Macromole-cules., 2004,37:9308-9313
-
[2]
[2] Herr R J. Bioorg. Med. Chem., 2002,10:3379-3393
-
[3]
[3] Bavetsias V, Marriott J H, Melin C, et al. J. Med. Chem., 2000,43:1910-1926
-
[4]
[4] Wittenberger S. J. Org. Prep. Proced. Int., 1994,26:499-531
-
[5]
[5] Ostrovskii V A, Pevzner M S, Kofmna T P, et al. Targets Heterocycl. Syst., 1999,3:467
-
[6]
[6] Hiskey M, Chavez D E, Naud D L, et al. Proc. Int. Pyrotech. Semin., 2000,27:3-14
-
[7]
[7] Koldobskii G I, Ostrovskii V A. Usp. Khim., 1994,63:847-865
-
[8]
[8] Huisgen R, Sauer J, Sturn H J. Chem. Ber., 1960,93:2106-2124
-
[9]
[9] Abu-Eittah R H, El-Kelany. Spectrochim. Acta. Part A, 2012, 99:316-328
-
[10]
[10] Terrence R B J, Yao Z J, Gao Y, et al. Bioorg. Med. Chem., 2001,9:1439-1445
-
[11]
[11] Herandez A S, Cheng P T W, Musial C M, et al. Bioorg. Med. Chem., Lett., 2007,17:5928-5933
-
[12]
[12] Wang L Z, Qu Z R, Zhao H. Inorg. Chem.,2003,42:3969-3971
-
[13]
[13] Amantini D, Beleggia R, Fringuelli F, et al. J. Org. Chem., 2004,69:2896-2898
-
[14]
[14] Aridoss G, Zhao C Q, Borosky G L, et al. J. Org. Chem., 2012,77:4152-4155
-
[15]
[15] Ostrovskii V A, Koren A O. Heterocycles., 2000,53:1421-1448
-
[16]
[16] Harding M M, Mokdsi G. Curr. Med. Chem., 2000,7(12): 1289-1303
-
[17]
[17] Demko Z P, Sharpless K B. J. Org. Chem., 2001,66:7945-7950
-
[18]
[18] Zhou Y, Yao C, Ni R J, et al. Synth. Commun., 2010,40: 2624-2632
-
[19]
[19] He J H, Li B J, Chen F S, et al. J. Mol. Catal. A, 2009,304: 135-138
-
[20]
[20] Aridoss G, Laali K K. Eur. J. Org. Chem., 2011:6343-6355
-
[21]
[21] Lang L M, Li B J, Liu W, et al. Chem. Comm., 2010,46:448-450
-
[22]
[22] Liu Y X, Song H, Zhang Q H, et al. Ind. Eng. Chem. Res., 2012,51:4779-4893
-
[23]
[23] Zhu L P, Zhang W D, Xiao H M, et al. J. Phys. Chem. C., 2008,112:10073-10078
-
[24]
[24] Zhong L S, Hu J S, Liang H P, et al. J. Adv. Mater., 2006, 18:2426-2431
-
[25]
[25] Yu D B, Sun X Q, Zou J W, et al. J. Phys. Chem. B, 2006, 110:21667-21671
-
[26]
[26] LI Lei(李蕾), ZENG Shu-yuan(曾涑源), MI Yu-wei(米玉伟), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012, 8(28):1643-1650
-
[27]
[27] Lin J, Lin J, Zhu Y F. Inorg. Chem., 2007,46(20):8372-8378
-
[28]
[28] Gillet M, Lemire C, Gillet E, et al. Surf. Sci., 2003,532:519-526
-
[29]
[29] Nagornaya L, Burachas S, Vostretsov Y, et al. J. Cryst. Growth., 1999,877:199-199
-
[30]
[30] Wahl D, Mykhaylyk M S, Mikhailik V B et al. J. Appl. Phys., 2005,97:083523-083523
-
[31]
[31] Song J M, Wang H, Li Y P, et al. Mater. Res. Bull., 2012, 47:315-320
-
[32]
[32] Dambournet D, Leclerc H, Vimont A, et al. Phys. Chem. Chem. Phys., 2009,11:1369-1379
-
[33]
[33] ZENG Yu-Feng(曾玉凤), LIU Zi-Li(刘自力), QIN Zu-Zeng (秦祖赠), et al. Chinese J. Mole. Catal.(Fenzi Cuihua), 2009,23(1):53-56
-
[1]
-
-
-
[1]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
-
[2]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
-
[3]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[4]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[5]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026
-
[6]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[7]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[8]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[9]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[10]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[11]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[12]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[13]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[14]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050
-
[15]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[16]
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
-
[17]
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
-
[18]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[19]
Rui LIU , Xinjun ZHOU , Tao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033
-
[20]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(375)
- HTML views(10)