Citation: SONG Ji-Mei, ZHAO Shao-Juan, WANG Yong, HU Hai-Qin, SHI Ya-Li, REN Ming-Song. ZnWO4 Nanoparticles as Catalyst for Synthesis of 5-Phenyl-1H-tetrazoles with High Activity[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1813-1818. doi: 10.3969/j.issn.1001-4861.2013.00.258 shu

ZnWO4 Nanoparticles as Catalyst for Synthesis of 5-Phenyl-1H-tetrazoles with High Activity

  • Received Date: 29 January 2013
    Available Online: 23 April 2013

    Fund Project: 国家自然科学基金(No.21171002) (No.21171002)安徽省自然科学基金(No.11040606M55) (No.11040606M55)安徽省教育厅自然科学基金(No.KJ2010A015)资助项目。 (No.KJ2010A015)

  • ZnWO4 nanoparticles were synthesized by a facile solvothermal method. ZnWO4 nanoparticles were utilized as the catalyst for the formation of 5-phenyl-1H-tetrazoles from cyclo-addition reaction. The results show that the yield reaches 81% when 0.2 mmol catalyst is used at 110℃ for 10 h. However, the yield only reaches 43% and 65% for amorphous and nanorods ZnWO4, respectively. Clearly, ZnWO4 nanoparticles display superior catalytic performance. This high activity might be attributed to the larger surface area and more active sites that originate from the small size and good dispersibility of ZnWO4 nanoparticles. The unsaturated W atoms on the surface of ZnWO4 nanoparticles can activate the nitriles and enhance the reactivity for azides.
  • 加载中
    1. [1]

      [1] Tsarevsky N V, Bernaerts K V, Dufour B, et al. Macromole-cules., 2004,37:9308-9313

    2. [2]

      [2] Herr R J. Bioorg. Med. Chem., 2002,10:3379-3393

    3. [3]

      [3] Bavetsias V, Marriott J H, Melin C, et al. J. Med. Chem., 2000,43:1910-1926

    4. [4]

      [4] Wittenberger S. J. Org. Prep. Proced. Int., 1994,26:499-531

    5. [5]

      [5] Ostrovskii V A, Pevzner M S, Kofmna T P, et al. Targets Heterocycl. Syst., 1999,3:467

    6. [6]

      [6] Hiskey M, Chavez D E, Naud D L, et al. Proc. Int. Pyrotech. Semin., 2000,27:3-14

    7. [7]

      [7] Koldobskii G I, Ostrovskii V A. Usp. Khim., 1994,63:847-865

    8. [8]

      [8] Huisgen R, Sauer J, Sturn H J. Chem. Ber., 1960,93:2106-2124

    9. [9]

      [9] Abu-Eittah R H, El-Kelany. Spectrochim. Acta. Part A, 2012, 99:316-328

    10. [10]

      [10] Terrence R B J, Yao Z J, Gao Y, et al. Bioorg. Med. Chem., 2001,9:1439-1445

    11. [11]

      [11] Herandez A S, Cheng P T W, Musial C M, et al. Bioorg. Med. Chem., Lett., 2007,17:5928-5933

    12. [12]

      [12] Wang L Z, Qu Z R, Zhao H. Inorg. Chem.,2003,42:3969-3971

    13. [13]

      [13] Amantini D, Beleggia R, Fringuelli F, et al. J. Org. Chem., 2004,69:2896-2898

    14. [14]

      [14] Aridoss G, Zhao C Q, Borosky G L, et al. J. Org. Chem., 2012,77:4152-4155

    15. [15]

      [15] Ostrovskii V A, Koren A O. Heterocycles., 2000,53:1421-1448

    16. [16]

      [16] Harding M M, Mokdsi G. Curr. Med. Chem., 2000,7(12): 1289-1303

    17. [17]

      [17] Demko Z P, Sharpless K B. J. Org. Chem., 2001,66:7945-7950

    18. [18]

      [18] Zhou Y, Yao C, Ni R J, et al. Synth. Commun., 2010,40: 2624-2632

    19. [19]

      [19] He J H, Li B J, Chen F S, et al. J. Mol. Catal. A, 2009,304: 135-138

    20. [20]

      [20] Aridoss G, Laali K K. Eur. J. Org. Chem., 2011:6343-6355

    21. [21]

      [21] Lang L M, Li B J, Liu W, et al. Chem. Comm., 2010,46:448-450

    22. [22]

      [22] Liu Y X, Song H, Zhang Q H, et al. Ind. Eng. Chem. Res., 2012,51:4779-4893

    23. [23]

      [23] Zhu L P, Zhang W D, Xiao H M, et al. J. Phys. Chem. C., 2008,112:10073-10078

    24. [24]

      [24] Zhong L S, Hu J S, Liang H P, et al. J. Adv. Mater., 2006, 18:2426-2431

    25. [25]

      [25] Yu D B, Sun X Q, Zou J W, et al. J. Phys. Chem. B, 2006, 110:21667-21671

    26. [26]

      [26] LI Lei(李蕾), ZENG Shu-yuan(曾涑源), MI Yu-wei(米玉伟), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012, 8(28):1643-1650

    27. [27]

      [27] Lin J, Lin J, Zhu Y F. Inorg. Chem., 2007,46(20):8372-8378

    28. [28]

      [28] Gillet M, Lemire C, Gillet E, et al. Surf. Sci., 2003,532:519-526

    29. [29]

      [29] Nagornaya L, Burachas S, Vostretsov Y, et al. J. Cryst. Growth., 1999,877:199-199

    30. [30]

      [30] Wahl D, Mykhaylyk M S, Mikhailik V B et al. J. Appl. Phys., 2005,97:083523-083523

    31. [31]

      [31] Song J M, Wang H, Li Y P, et al. Mater. Res. Bull., 2012, 47:315-320

    32. [32]

      [32] Dambournet D, Leclerc H, Vimont A, et al. Phys. Chem. Chem. Phys., 2009,11:1369-1379

    33. [33]

      [33] ZENG Yu-Feng(曾玉凤), LIU Zi-Li(刘自力), QIN Zu-Zeng (秦祖赠), et al. Chinese J. Mole. Catal.(Fenzi Cuihua), 2009,23(1):53-56

  • 加载中
    1. [1]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    14. [14]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    17. [17]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    18. [18]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    19. [19]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    20. [20]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

Metrics
  • PDF Downloads(0)
  • Abstract views(375)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return