Citation: MA Jing-Liang, WANG Dian-Long, CHEN Fei, FANG Ming-Xue. Synthesis and Characterization of Lead Sulfate/Graphene Nano Sheets Composites as Anode Materials for Lead Acid Battery[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1935-1941. doi: 10.3969/j.issn.1001-4861.2013.00.252 shu

Synthesis and Characterization of Lead Sulfate/Graphene Nano Sheets Composites as Anode Materials for Lead Acid Battery

  • Received Date: 29 November 2012
    Available Online: 20 March 2013

    Fund Project: 国家自然科学基金(No.50974045) (No.50974045)教育部博士点基金(No.20092302110052) (No.20092302110052)黑龙江省自然科学基金(No.B200918)资助项目。 (No.B200918)

  • Lead sulfate/graphene nano sheets (GNS) composites were fabricated by using a simple impregnation method. The composite was used as a negative active material for lead acid battery. Compared with pure lead sulfate electrodes, the composite electrodes display higher specific capacity and rechargeable performance under high charge and discharge rates. An average discharging specific capacity of PbSO4/GNS composites reaches 110, 94 and 69 mAh·g-1 at current density of 100 mA·g-1, 200 mA·g-1 and 300 mA·g-1, respectively. However, the average discharging capacity of PbSO4 only reaches 49, 5 and 0.5 mAh·g-1 at the same condition. The electrochemical characteristic of the composites electrode was studied by cyclic voltammetry (CV) and battery tests. The cyclic voltammetry results show that capacitive effect and the hydrogen evolution of graphene nano sheets become more obvious with the increase in scanning rate resulting in 20% lower charging efficiency of PbSO4/GNS composites compared to lead sulfate. The battery charge-discharge curves confirm that graphene nano sheets improve the charging voltage about 0.1 V and can also help double the capacity of lead sulfate. The XRD and SEM results show that lead sulfate particles are well dispersed on the surface of graphene nano sheets instead of agglomerating.
  • 加载中
    1. [1]

      [1] Lam T, Haigh P, Phyland G, et al. J. Power Sources, 2004, 133(1):126-134

    2. [2]

      [2] Aidman G. J. Power Sources, 1996,59(1):25-30

    3. [3]

      [3] Vermesan H, Hirai N, Shiota M, et al. J. Power Sources, 2004,133(1):52-58

    4. [4]

      [4] Petkova G, Nikolov P, Pavlov D. J. Power Sources, 2006,158 (2):841-845

    5. [5]

      [5] Pavlov D, Nikolov P, Rogachev T. J. Power Sources, 2011, 196(11):5155-5167

    6. [6]

      [6] Lam T, Louey R. J. Power Sources, 2006,158(2):1140-1148

    7. [7]

      [7] Lam T, Louey R, Haigh P, et al. J. Power Sources, 2007,174 (1):16-29

    8. [8]

      [8] Cooper A, Furakawa J, Lam T, et al. J. Power Sources, 2009, 188(2):642-649

    9. [9]

      [9] Furukawa J, Takada T, Monma D, et al J. Power Sources, 2010,195(4):1241-1245

    10. [10]

      [10] Novoselov S, Geim K, Morozov V, et al. Science, 2004,306 (5696):666-669

    11. [11]

      [11] Chou S L, Wang J Z, Choucair M, et al. Electrochem. Commun., 2010,12(2):303-306

    12. [12]

      [12] Zhu N, Liu W, Xue M, et al. Electrochim. Acta, 2010,55 (20):5813-5818

    13. [13]

      [13] Li Y, Lü X, Lu J, et al. J. Phys. Chem. C, 2010,114(49): 21770-21774

    14. [14]

      [14] Yan Z, Hu X. Mater. Chem. Phys., 2003,77(2):402-405

    15. [15]

      [15] Zhang B, Zhong J, Li W, et al. J. Power Sources, 2010,195 (13):4338-4343

    16. [16]

      [16] Chen F, Hu X, Ren A, et al. CN Patent, 102201575. 2011-9-28.

    17. [17]

      [17] Hummers S, Offeman E. J. Am. Chem. Soc., 1958,80(6): 1339-1339

    18. [18]

      [18] Du Q, Zheng M, Zhang L, et al. Electrochim. Acta, 2010,55 (12):3897-3903

    19. [19]

      [19] Moseley T. J. Power Sources, 2009,191(1):134-138

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    14. [14]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    17. [17]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    18. [18]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    19. [19]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    20. [20]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

Metrics
  • PDF Downloads(0)
  • Abstract views(330)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return