Citation: LI Dong-Lin, TIAN Miao, LI Qian, MA Shou-Long, XIE Rong, GOU Lei, FAN Xiao-Yong, ZHAO Peng. Nanostructure and Transparency of KTiOPO4@SiO2 Nanocrystalline Glass-Ceramics by Wet-Chemical Route[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1903-1908. doi: 10.3969/j.issn.1001-4861.2013.00.246 shu

Nanostructure and Transparency of KTiOPO4@SiO2 Nanocrystalline Glass-Ceramics by Wet-Chemical Route

  • Received Date: 21 January 2013
    Available Online: 18 March 2013

    Fund Project: 教育部高等学校科学技术重大项目培育资金项目(No.708084) (No.708084)国家自然科学基金(No.21073021) (No.21073021)中央高校基本科研业务费专项资金(No.CHD2010ZD008,CHD2011ZD007)资助项目。 (No.CHD2010ZD008,CHD2011ZD007)

  • Transparent 25KTiOPO4-75SiO2 (KTP@SiO2) nanocrystalline glass-ceramics were synthesized by the wet-chemical method. Morphology and nanostructure of the KTP nanocrystals embedded in the silicate glass were characterized by means of X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The results show that, KTP nanocrystals with the size of ~30 nm are precipitated from SiO2-based glass in the heat-treated transparent gels, forming KTiOPO4@SiO2 nanophase glass-ceramics. At the same time, a large amount of irregular mesopores were eliminated, but small amount of spherical nanopores with 30 nm-diameter form. This type of relatively dense glass-ceramic exhibits the optical transmittance of about 64% in the visible region. Based on nanostructure data, the effects of the nanostructure on the transparency of the glass-ceramics were analyzed according to Rayleigh model. It shows that the ratio of the refractive indices decreases the optical transmittance of the KTiOPO4@SiO2 nano-glass-ceramics in the visible region.
  • 加载中
    1. [1]

      [1] Sigaev V N, Pernice P, Aronne A, et al. J. Non-Cryst. Solids, 2001,292(1-3):59-69

    2. [2]

      [2] Sigaev V N, Stefanovich S Y, Champagnon B, et al. J. Non-Cryst. Solids, 2002,306(3):238-248

    3. [3]

      [3] Aronne A, Depero L E, Sigaev V N, et al. J. Non-Cryst. Solids, 2003,324(3):208-219

    4. [4]

      [4] Murugan G S, Varma K B R, Takahashi Y, et al. J. Appl. Phys. Lett., 2001,78(25):4019-4021

    5. [5]

      [5] Vigouroux H, Fargin E, Gomez S, et al. Adv. Funct. Mater., 2012,22(19):3985-3993

    6. [6]

      [6] ZHANG Qin-Yuan(张勤远),JIANG Zhong-Hong(姜中宏), HU Li-Li(胡丽丽). Chinese J. Inorg. Maters.(Wuji Cailiao Xuebao), 1997,12(4):482-486

    7. [7]

      [7] Bierlein J, Vanherzeele H. J. Opt. Soc. Am. B, 1989,6(4): 622-633

    8. [8]

      [8] Li D, Kong L, Zhang L, et al. J. Non-Cryst. Solids, 2000,271 (1/2):45-55

    9. [9]

      [9] Li D, Zhang L, Yao X. J. Non-Cryst. Solids, 2008,354(15/16): 1774-1779

    10. [10]

      [10] Santana-Alonso A, Yanes A C, Mendez-Ramos J, et al. Phys. Status Solidi A, 2009,206(10):2249-2254

    11. [11]

      [11] Li D, Lin Y, Zhang L, et al. J. Non-Cryst. Solids, 2000,261 (1/2/3):273-276

    12. [12]

      [12] Wallace S, Hench L L. J. Mater. Res. Soc. Symp. Proc., 1984,32:47-52

    13. [13]

      [13] Zarzychi J, Prassas M, Phallipou J. J. Mater. Sci., 1982,17 (11):3371-3379

    14. [14]

      [14] Parashar V K, Raman V, Bahl O P. J. Non-Cryst. Solids, 1996,201(1/2):50-152

    15. [15]

      [15] Fricke J, Emmerling A, Aerogels J. J. Amer. Ceram. Soc., 1992,75(8):2027-2035

    16. [16]

      [16] DUAN Fei(段非), FANG Cheng-Pin(方承平), DING Zheng-Ya(丁振压). Chin. J. Ceram. Soc.(Guisuanyan Xuebao), 1998,26(3):395-398

    17. [17]

      [17] ZOU Xiang-Yu(邹翔宇), ZHANG Hong-Bo(张洪波), LÜ Ting(吕挺), et al. Chin. J. Ceram. Soc.(Guisuanyan Xuebao), 2013,41(1):44-49

    18. [18]

      [18] HOU Zhao-Xia(侯朝霞). Chin. J. Ceram. Soc.(Guisuanyan Xuebao), 2007,35(6):761-764

    19. [19]

      [19] ZHANG Chang-Jian(张常建), XIAO Zhuo-Hao(肖卓豪), LU An-Xian(卢安贤). Mater. Rev.(Cailiao Daobao), 2009,23(7): 38-43

    20. [20]

      [20] Thiana Berthier, Fokin Vladimir M, Edgar Zanotto D. J. Non-Cryst Solids, 2008,354(15-16):1721-1730

    21. [21]

      [21] Beall G H, Duke D A. J. Mater. Sci., 1969,4(4):340-352

  • 加载中
    1. [1]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    2. [2]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    17. [17]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    18. [18]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

Metrics
  • PDF Downloads(0)
  • Abstract views(575)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return