Citation: WU Zhen-Yu, LI Feng-Jie, LI Cun, ZHU Wei-Ju, FANG Min. Preparation and Photocatalytic Properties of Different Morphological ZnO@ PANI Nanocomposites[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2091-2098. doi: 10.3969/j.issn.1001-4861.2013.00.245 shu

Preparation and Photocatalytic Properties of Different Morphological ZnO@ PANI Nanocomposites

  • Received Date: 20 January 2013
    Available Online: 8 April 2013

    Fund Project: 安徽省自然科学基金(No.11040606M33) (No.11040606M33)安徽大学博士启动基金(No.02303319)资助项目 (No.02303319)

  • The particle, rod, and spherical flower-like nano-ZnO with the uniform morphology and size were prepared through a simple direct precipitation method and hydrothermal method. Then nano-ZnO was modified by the silane coupling agent anilino-methyl-triethoxysilane (KH-42) (m-ZnO), and the nanocomposites consisted of m-ZnOand polyaniline (m-ZnO@PANI) were synthesized by Pickering emulsion polymerization method. XRD, SEM, HRTEM, FTIR, UV-Vis, TGwere used to characterize the shape, composition and structure of the nano-ZnO and m-ZnO@PANI nanocomposite. The photocatalytic activity of m-ZnO@PANI nanocomposites under UV-vis and visible light irradiation was evaluated by using nanocomposites as photocatalysts to degrade methylene blue (MB) dye molecules in aqueous solution. The results indicate that the nanocomposites have strong absorption of UVand visible light and good photocatalytic efficiency under UV-Vis and visible light irradiation. The photocatalytic efficiency of the rod nanocomposite is the best among them. The photodegradation rates under UV-Vis irradiation and visible light irradiation are 98.2% and 97.1% respectively. Furthermore, the recycled photodegradation efficiency of nanocomposite is stable and the second cycle photodegradation rate under UV-Vis irradiation was 96.0%.
  • 加载中
    1. [1]

      [1] Guo M Y, Fung M K, Fang F, et al. J. Alloys Compd. 2011, 509:1328-1332 [2] Faisal M, Khan S B, Rahman M M, et al. Appl. Surf. Sci., 2011,258:672-677 [3] SONG Ji-Zhong(宋继中), HE Ying(贺英), PAN Zhao-Dong (潘照东), et al. Acta Chim. Sin.(Huaxue Xuebao), 2011,69: 1582-1588 [4] WANG Hu(王虎), XIE Juan(谢娟), DUAN Ming(段明). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27: 193-198 [5] WANG Hu(王虎), XIE Juan(谢娟), DUAN Ming(段明). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27:321- 326 [6] WANG Zhi-Fang(王志芳), LI Mi(李密), ZHANG Hong-Xia (张红霞), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28:715-720 [7] GAO Hai-Xia(高海霞), CHENG Guo-Feng(程国峰), CHENG Rong-Ming(成荣明), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006,22:872-876 [8] LI Yun-Jun(李跃军), YIN Zhong-Hong(尹忠红), CAO Tie- Ping(曹铁平),et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebaoe), 2011,27:1348-1352 [9] TENG Hong-Hui(滕洪辉), XU Shu-Kun(徐淑坤), WANG Meng(王猛). J. Inorg. Mater. Sin. (Wuji Cailiao Xuebao), 2010,25:1034 -1040 [10]LI Chang-Quan(李长全), LUO Lai-Tao(罗来涛), XIONG Guang-Wei(熊光伟). Chin. J. Catal. (Cuihua Xuebao). 2009, 30:1058-1062 [11]YU Chang-Lin(余长林), YANG Kai(杨凯), YU Ji-Mei (余济美), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27,505-512 [12]Wang H H, Xie C S, Zhang W, et al. J. Hazard. Mater. 2007,141:645-652 [13]Ma S S, Li R, Lü C P, et al. J. Hazard. Mater. 2011,192:730- 740 [14]Mahmood M A, Baruah S, Dutta J. Mater. Chem. Phys., 2011, 130:531-535 [15]Patil A B, Patil K R, Pardeshi S K. J. Hazard. Mater. 2010, 183:315-323 [16]Fu D Y, Han G Y, Chang Y Z, et al. Mater. Chem. Phys. 2012,132:673-681 [17]Zhang H, Zong R L, Zhu Y F. J. Phys. Chem. C, 2009, 113,4605-4611 [18]Eskizeybek V, Sar F, Gülce H, et al. Appl. Cataly. B: Environ, 2012,119-120:197-206 [19]Li Y H, Gong J, McCune M, et al. Synth. Metal, 2010,160: 499-503 [20]Sharma B K, Kharea N, Dhawan S K, et al. J. Alloy. Compd, 2009,477:370-373 [21]Huang G W, Xiao H M, Shi H Q, et al. J. Poly. Sci. Part A: Poly. Chem, 2012,50:2794-2801 [22]Alves K G B, Felix J F, Melo E F D, et al. J. Appl. Poly. Sci., 2012,125:E141-E147 [23]Sharma S P, Suryanarayana M V S, Nigam A K, et al. Cataly. Comm., 2009,10:905-912 [24]Huang J, Yang T L, Kang Y F. et al. Natural. Gas. Chem. 2011,20:515-519 [25]Ahmed F, Kumar S, Arshi N. et al. Thin Solid Films, 2011, 519:8375-8378 [26]Ameen S, Akhtar M S, Kim Y S, et al. Colloid. Polym. Sci., 2011,289:415-421 [27]Olad A, Nosrati R. Res. Chem. Intermed., 2012,38:323-326 [28]LI Feng-Jie(李奉杰), LI Cun(李村), ZHANG Xian-Li (张现利), et al. Bull. Chin. Ceram. Soc.(Guisuanyan Tongbao), 2012,31:145-149 [29]He Y J. Appl. Surf. Sci., 2005,249:1-6 [30]Zhu S, Wei W, Chen X, et al. J Solid State Chem., 2012, 190:174-179

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    7. [7]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(0)
  • Abstract views(227)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return