Citation: WANG Xiao-Qian, ZHANG Lin, ZHU Shun-Guan, ZHAO Jia. Preparation and Performance of Self-assembled Al/Fe2O3 and Al/CuO[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1799-1804. doi: 10.3969/j.issn.1001-4861.2013.00.228 shu

Preparation and Performance of Self-assembled Al/Fe2O3 and Al/CuO

  • Received Date: 11 January 2013
    Available Online: 17 March 2013

    Fund Project: 国家自然科学基金(No.61106078) (No.61106078)南京理工大学自主科研重大研究计划(No.2011ZDJH28)资助项目。 (No.2011ZDJH28)

  • Copper oxide nanoflower and iron oxide nanoring were prepared by membrane templating and hydrothermal, respectively. Copper oxide nanoflower and aluminum composite were self-assembled, so did iron oxide nanoring and aluminum. The connection between different materials were enhanced by self-assembly. The heat release and pressure of copper oxide nanoflower and aluminum were increased from 523 J·g-1, 1 858 kPa to 1 069 J·g-1, 4 389 kPa. Iron oxide nanoring and aluminum were increased from 1 448 J·g-1, 749 kPa to 2 039 J·g-1, 2 280 kPa. There are great difference between the two thermit, and the static-electric sensitivity of copper oxide nanoflower and aluminum is higher than that of most energetic materials, while the impact sensitivity of iron oxide nanoring and aluminum is lower. Thus different thermit can be used in different fields based on their performance.
  • 加载中
    1. [1]

      [1] Valliappan S, Swiatkiewicz J, Puszynski J A. Powder Technol., 2005,156(2):164-169

    2. [2]

      [2] WANG Xin(王昕). Chin. J. Explos. Propellants(Huozhaoyao Xuebao), 2006,29(2):29-32

    3. [3]

      [3] Rossi C, Zhang K L, Estève D, et al. J. Microelectromech. Syst., 2007,16(4):919-931

    4. [4]

      [4] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), GAO Hong-Xu(高 红旭), et al. J. Mater. Engin.(Cailiao Gongcheng), 2011,11: 23-28

    5. [5]

      [5] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), HAO Hai-Xia(郝 海霞), et al. Chin. J. Explos. Propellants(Huozhayao Xuebao), 2011,34(1):67-72

    6. [6]

      [6] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), PEI Qing(裴庆), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011, 27(2):231-238

    7. [7]

      [7] Aumann C E, Skofronick G L, Martin J A. J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., 1995,13(2):1178-1183

    8. [8]

      [8] Bockmon B S, Pantoya M L, Son S F, et al. J. Appl. Phys., 2005,98(6):064903/1-064903/7

    9. [9]

      [9] Granier J J, Pantoya M L. Combust. Flame, 2004,138(4):373-383

    10. [10]

      [10] Pantoya M L, Granier J J. Propellants Explos. Pyrotech., 2005,30(1):53-62

    11. [11]

      [11] Bhattacharya S, Gao Y, Apperson S, et al. J. Energ. Mater., 2006,24(1):1-15

    12. [12]

      [12] Gash A E, Tillotson T M, Satcher J H, et al. Chem. Mater., 2001,13(3):999-1007

    13. [13]

      [13] Prakash A, McCormick A V, Zachariah M R. Chem. Mater., 2004,16(8):1466-1471

    14. [14]

      [14] Prentice D, Pantoya M L, Clapsaddle B J. J. Phys. Chem., B, 2005,109(43):20180-20185

    15. [15]

      [15] Clapsaddle B J, Sprehn D W, Gash A E, et al. J. Non-Cryst. Solids, 2004,350(1):173-181

    16. [16]

      [16] Prakash A, McCormick A V, Zachariah M R. Nano Lett., 2005,5(7):1357-1360

    17. [17]

      [17] K. B. Plantier. Combust. Flame, 2005,140:299-309

    18. [18]

      [18] Sun J, Pantoya M L, Simon S L. Thermochim. Acta, 2006, 444(2):117-127

    19. [19]

      [19] Moore K, Pantoya M L. Propellants Explos. Pyrotech., 2006, 31(3):182-187

    20. [20]

      [20] Cheng J L, Hng H H, Ng H Y, et al. J. Phys. Chem. Solids, 2010,71:90-94

    21. [21]

      [21] Kim S H, Zachariah M R. Adv. Mater., 2004,16(20):1821-1825

    22. [22]

      [22] Rajesh S, Senthil S. Propellants Explos. Pyrotech., 2008,33 (2):122-130

    23. [23]

      [23] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), ZHANG Ping-Fei (张平飞). Summarization(Zongshu), 2009,6(6):60-67

    24. [24]

      [24] Zhang K L, Rossi C, Petrantoni M, et al. J. Microelectromech. Syst., 2008,17(4):832-836

    25. [25]

      [25] Tillotson T M, Gash A E, Simpson R L, et al. J. Non-Cryst. Solids, 2001,285(1):338-345

    26. [26]

      [26] ZHOU Chao(周超), LI Guo-Ping(李国平), LUO Yun-Jun(罗 运军). New Chem. Mater.(Huagong Xinxing Cailiao), 2010, 38(zl):4-7

    27. [27]

      [27] Cheng J L, Hng H H, Lee Y W, et al. Combust. Flame, 2010,157:2241-2249

    28. [28]

      [28] WANG Yi(王毅), LI Feng-Sheng(李凤生), JIANG Wei(姜炜), et al. Initiators Pyrotechnics(Huogongpin), 2008,4:11-14

    29. [29]

      [29] WANG Xiao-Qian(王晓倩), ZHANG Lin(张琳), ZHU Shun-Guan(朱顺官), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(11):2313-2320

    30. [30]

      [30] Malynych S, Luzinov I, Chumanov G. J. Phys. Chem., B, 2002,106,1280-1289

    31. [31]

      [31] Wang Y, Jiang W, Liang L X, et al. Rare Metal Mat. Eng., 2012,4(1):0009-0013

  • 加载中
    1. [1]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    2. [2]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    3. [3]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    4. [4]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    5. [5]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    8. [8]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    9. [9]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    10. [10]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    13. [13]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    14. [14]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    15. [15]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    16. [16]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    17. [17]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

Metrics
  • PDF Downloads(0)
  • Abstract views(454)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return