Citation: LI Ming-Ji, WANG Xiu-Feng, LI Hong-Ji, WU Xiao-Guo, QU Chang-Qing, YANG Bao-He. Growth Characteristics of Single-Crystalline MgO Nanobelts and Its Photoluminescence Properties[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(6): 1199-1205. doi: 10.3969/j.issn.1001-4861.2013.00.190 shu

Growth Characteristics of Single-Crystalline MgO Nanobelts and Its Photoluminescence Properties

  • Received Date: 4 January 2012
    Available Online: 5 March 2013

    Fund Project: 国家自然科学基金(No.50972105) (No.50972105)天津市自然科学基金(No.10SYSYJC27700) (No.10SYSYJC27700)国家高技术研究发展计划(863)(No.2013AA030801)资助项目。 (863)(No.2013AA030801)

  • Single-crystal MgO nanobelts were synthesized by direct current (DC) arc plasma jet chemical vapor deposition (CVD) on Mo substrates. An attempt has been made to prepare MgO nanobelts through decomposition of magnesium nitrate under argon and hydrogen flow at 950 ℃ for different durations. The MgO nanobelts were characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and powder X-ray diffraction (XRD) pattern. When reaction time was increased from 0.5 to 12 min, the initially formed “tadpole-like” MgO nanostructures transformed into “dendrite-like” structures, nanobelts, and finally nanorods. The “tadpole-like” nanostructures are mainly belts with Mo nanoparticles capped at the MgO nanobelts’ ends, and the nanostructure is covered by an amorphous layer. The nanobelts prepared after 5 min with widths ranging from 30 to 50 nm. The growth of MgO nanobelts was initiated by Mo catalyst nanoparticles via a catalyst-assisted vapor-liquid-solid (VLS) process, and a side growth along the belt width direction via a vapor-solid (VS) process was also suggested. Moreover, the MgO nanobelts exhibited strong ultraviolet-blue emission. The strong optical properties were correlated with large surface area and presence of oxide ions in low coordination (LC) OLC2- (where LC=5C, 4C and 3C for terrace, edge, corner and kink sites, respectively) along with defects, which was revealed by fourier transform Infrared (FTIR) spectrometer and photoluminescence (PL) spectroscopy studies. Our group for the first time reported the DC arc plasma jet CVD method to obtain single crystalline MgO nanobelts, which possesses the advantages of being simple, economical, fast, effective and environmentally benign.
  • 加载中
    1. [1]

      [1] Shah M A, Al-Marzouki F M. Int. J. Biomed. Nanosci. Nanotechnol., 2010,1(1):10-16

    2. [2]

      [2] Zhu K K, Hua W M, Deng W, et al. Eur. J. Inorg. Chem., 2012,2012(17):2869-2876

    3. [3]

      [3] YANG Xiao-Long(杨晓龙), XIA Chun-Gu(夏春谷), TANG Li-Ping(唐立平), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(8):1541-1549

    4. [4]

      [4] KONG Meng(孔猛), YANG Qi(杨琦), LU Wen(卢雯), et al. Chin. J. Catal.(Cuihua Xuebao), 2012,33(9):1508-1516

    5. [5]

      [5] YANG Wen(杨文), CHU Wei(储伟), JIANG Cheng-Fa (江成发), et al. Chin. J. Catal.(Cuihua Xuebao), 2011,32(8): 1323-1328

    6. [6]

      [6] Zhang J, Zhang L, Peng X, et al. Appl. Phys. A: Mater. Sci. Process, 2001,73(6):773-775

    7. [7]

      [7] LU Qi-Fang(卢启芳), LIU Su-Wen(刘素文). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(10):2066-2070

    8. [8]

      [8] LI Jie-Bin(李节宾), XU You-Long(徐友龙), XIONG Li-Long (熊礼龙), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(11):2593-2599

    9. [9]

      [9] Jung C H, Lee J Y, Yoon D H. J. Nanosci. Nanotechnol., 2012,12(2):1700-1704

    10. [10]

      [10] Peidong Y, Lieber C M. Science, 1996,273(5283):1836-1840

    11. [11]

      [11] Kumar A, Kumar J, Priya S. Appl. Phys. Lett., 2012, 100(19):192404

    12. [12]

      [12] Kim J, Gila B, Mehandru R, et al. J. Electrochem. Soc., 2002,149(8):G482-G484

    13. [13]

      [13] Umar A, Rahman M M, Hahn Y B. Electrochem. Commun., 2009,11(7):1353-1357

    14. [14]

      [14] Zhao J W, Qin L R, Hao Y H, et al. Microchim. Acta, 2012,178(3/4):439-445

    15. [15]

      [15] Wee S H, Goyal A, MORE K L, et al. Nanotechnology, 2009,20(21):215608

    16. [16]

      [16] Zhang J, Zhang L D. Chem. Phys. Lett., 2002,363(3/4): 293-297

    17. [17]

      [17] Li Y B, Bando Y, Sato T. Chem. Phys. Lett., 2002,359 (1/2):141-145

    18. [18]

      [18] Ma R Z, Bando Y. Chem. Phys. Lett., 2003,370(5/6):770-773

    19. [19]

      [19] CHEN Chen(陈晨), ZHUANG Jing(庄京), WANG Ding- Sheng(王定胜), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(6):859-861

    20. [20]

      [20] Shi Q Z, Liu Y C, Gao Z M, et al. J. Mater. Sci., 2008,43 (4):1438-1443

    21. [21]

      [21] Fang X S, Ye C H, Zhang L D, et al. Small, 2005,1(4): 422-428

    22. [22]

      [22] Hao Y F, Meng G W, Zhou Y, et al. Nanotechnology, 2006,17(19):5006-5012

    23. [23]

      [23] ZHAI Hua-Zhang(翟华嶂), AN Xiao-Qiang(安晓强), CAO Chuan-Bao(曹传宝), et al. Rare Metal Mater. Eng. (Xiyou Jinshu Cailiao Yu Gongcheng), 2008,37(S1):667-670

    24. [24]

      [24] Gao T, Wang T. J. Phys. Chem. B, 2004,108(52): 20045- 20049

    25. [25]

      [25] Sutradhar N, Sinhamahapatra A, Pahari S K, et al. J. Phys. Chem. C, 2011,115(25):12308-12316

    26. [26]

      [26] Sutradhar N, Sinhamahapatra A, Roy A B, et al. Mater. Res. Bull., 2011,46(11):2163-2167

    27. [27]

      [27] Selvamani T, Sinhamahapatra A, Bhattacharjya D, et al. Mater. Chem. Phys., 2011,129(3):853-861

    28. [28]

      [28] Selvam N C S, Kumar R T, Kennedy L J, et al. J. Alloys Compd., 2011,509(41):9809-9815

    29. [29]

      [29] Gribov E N, Bertarione S, Scarano D, et al. J. Phys. Chem. B, 2004,108(41):16174-16186

    30. [30]

      [30] Kumar A, Thota S, Varma S, et al. J. Lumin., 2011,131(4): 640-648

    31. [31]

      [31] Sterrer M, Berger T, Diwald O, et al. J. Am. Chem. Soc., 2002,125(1):195-199

    32. [32]

      [32] Wu M C, Truong C M, Goodman D W. Phys. Rev. B: Condens. Matter. Mater. Phys., 1992,46(19):12688-12694

    33. [33]

      [33] Trevisanutto P E, Sushko P V, Shluger A L, et al. Surf. Sci., 2005,593(1/2/3):210-220

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(683)
  • Abstract views(1942)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return