Citation: JIANG Wen, LIU Jun-Xue, FENG Juan, WANG Ji-Zhuang, LI Yan-Peng, AN Chang-Hua. SiO2@AgCl:Ag Nanocomposites:an Efficient Plasmonic Photocatalyst for Degradation of Rhodamine B under Visible-Light Irradiation[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1753-1758. doi: 10.3969/j.issn.1001-4861.2013.00.187 shu

SiO2@AgCl:Ag Nanocomposites:an Efficient Plasmonic Photocatalyst for Degradation of Rhodamine B under Visible-Light Irradiation

  • Received Date: 10 January 2013
    Available Online: 8 March 2013

    Fund Project: 国家自然科学基金 (No.21001116) (No.21001116)中石油创新基金 (No.2010D-5006-0505) 资助项目。 (No.2010D-5006-0505)

  • A plasmonic AgCl:Ag nanoparticles supported on SiO2 has been prepared using polyol precipitation method followed by photoreduction. On the basis of characterization, it was found that SiO2@AgCl:Ag nanoparticles exhibit shaped cube-tetrapods. The as-prepared catalysts show strong absorption in visible region due to surface plasmon resonance of Ag nanograins, which are beneficial for photocatalytic degradation of toxic persistent organic pollutants, e.g., rhodamine B, under visible light irradiation. For example, only two minutes was taken to decompose rhodamine B molecules with the assistance of SiO2@AgCl:Ag. Furthermore, radical scavenger effects demonstrate that O2·- and ·OH radicals are main active oxidation species in photocatalytic reaction. These features mean SiO2@AgCl:Ag can find applications in the fields of water disinfection and environmental remediation.
  • 加载中
    1. [1]

      [1] Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995,95(1):69-96

    2. [2]

      [2] Warren S C, Thimsen E. Energy Environ. Sci., 2012,5(1): 5133-5146

    3. [3]

      [3] Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010,39 (11):4206-4219

    4. [4]

      [4] Linic S, Christopher P, Ingram D B. Nat. Mater., 2011,10 (12):911-921

    5. [5]

      [5] Tong H, Ouyang S X, Bi Y P, et al. Adv. Mater., 2012,24(2): 229-251

    6. [6]

      [6] TANG Yu-Chao(唐玉朝), HUANG Xian-Huai(黄显怀), YU Han-Qing(俞汉青), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(11):1747-1751

    7. [7]

      [7] CHANG Lin(常琳), LIU Jing-Bing(刘晶冰), WANG Jin-Shu (王金淑), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(5):744-748

    8. [8]

      [8] CHEN Xiao-Yun(陈孝云), LU Dong-Fang(陆东芳), ZHANG Shu-Hui(张淑惠), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):307-313

    9. [9]

      [9] Wang P, Huang B B, Qin X, et al. Angew. Chem. Int. Ed., 2008,47(41):7931-7933

    10. [10]

      [10] Zhou X F, Hu C, Hu X X, et al. J. Phys. Chem. C, 2010, 114(6):2746-2750

    11. [11]

      [11] Yu J G, Dai G P, Huang B B. J. Phys. Chem. C, 2009,113 (37):16394-16401

    12. [12]

      [12] Elahifard M R, Rahimnejad S, Haghighi S, et al. J. Am. Chem. Soc., 2007,129(31):9552-9553

    13. [13]

      [13] Hu C, Hu X X, Wang L S, et al. Environ. Sci. Technol., 2006,40(24):7903-7907

    14. [14]

      [14] Guo J F, Ma B, Yin A, et al. J. Hazard. Mater., 2012,211: 77-82

    15. [15]

      [15] CAO Jing(曹静), LUO Bang-De(罗邦德), LIN Hai-Li (林海莉), et al. Environ. Chem., 2011,30(5):983-988

    16. [16]

      [16] WANG En-Hua(王恩华), LIU Su-Wen(刘素文), LI Tang-Gang(李堂刚), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(3):537-541

    17. [17]

      [17] Cao J, Luo B D, Lin H L, et al. J. Hazard. Mater., 2011,190 (1/2/3):700-706

    18. [18]

      [18] Hu C, Peng T W, Hu X X, et al. J. Am. Chem. Soc., 2010, 132(2):857-862

    19. [19]

      [19] Zhu M S, Chen P L, Liu M H. ACS Nano, 2011,5(6):4529-4536

    20. [20]

      [20] Cheng H F, Huang B B, Dai Y, et al. Langmuir, 2010,26(9): 6618-6624

    21. [21]

      [21] Cheng H H, Huang B B, Wang P, et al. Chem. Commun., 2011,47(25):7054-7056

    22. [22]

      [22] Rodrigues S, Uma S, Martyanov I N, et al. J. Catal., 2005, 233(2):405-410

    23. [23]

      [23] Kakuta N, Goto N, Ohkita H, et al. J. Phys. Chem. B, 1999, 103(29):5917-5919

    24. [24]

      [24] Stöber W, Fink A. J. Colloid Interface Sci., 1968,26(1):62-69

    25. [25]

      [25] An C H, Peng S, Sun Y G. Adv. Mater., 2010,22(23):2570-2574

    26. [26]

      [26] Wang J Z, An C H, Zhang M Y, et al. Can. J. Chem., 2012, 90(10):858-864

    27. [27]

      [27] Wang P, Huang B B, Lou Z Z, et al. Chem. Eur. J., 2010,16 (2):538-544

    28. [28]

      [28] Hsiao C N, Huang K S. J. Appl. Polym. Sci., 2005,96(5): 1936-1942

    29. [29]

      [29] Guiu G, Grange P. J. Catal., 1995,156(1):132-138

    30. [30]

      [30] Lassaletta G, Fernfindez A, Espinós J P, et al. J. Phys. Chem., 1995,99(5):1484-1490

    31. [31]

      [31] Ndiege N, Chandrasekharan R, Radadia A D, et al. Chem. Eur. J., 2011,17(27):7685-7693

    32. [32]

      [32] Tejeda J, Shevchick N J, Braun W, et al. Phys. Rev. B, 1975, 12(4):1557-1566

    33. [33]

      [33] Hamilton J F. Photogr. Sci. Eng., 1974,18(5):493-500

    34. [34]

      [34] Soni S S, Henderson M J, Bardeau J F, et al. Adv. Mater., 2008,20(8):1493-1498

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    3. [3]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(0)
  • Abstract views(322)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return