Citation:
JIANG Wen, LIU Jun-Xue, FENG Juan, WANG Ji-Zhuang, LI Yan-Peng, AN Chang-Hua. SiO2@AgCl:Ag Nanocomposites:an Efficient Plasmonic Photocatalyst for Degradation of Rhodamine B under Visible-Light Irradiation[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(8): 1753-1758.
doi:
10.3969/j.issn.1001-4861.2013.00.187
-
A plasmonic AgCl:Ag nanoparticles supported on SiO2 has been prepared using polyol precipitation method followed by photoreduction. On the basis of characterization, it was found that SiO2@AgCl:Ag nanoparticles exhibit shaped cube-tetrapods. The as-prepared catalysts show strong absorption in visible region due to surface plasmon resonance of Ag nanograins, which are beneficial for photocatalytic degradation of toxic persistent organic pollutants, e.g., rhodamine B, under visible light irradiation. For example, only two minutes was taken to decompose rhodamine B molecules with the assistance of SiO2@AgCl:Ag. Furthermore, radical scavenger effects demonstrate that O2·- and ·OH radicals are main active oxidation species in photocatalytic reaction. These features mean SiO2@AgCl:Ag can find applications in the fields of water disinfection and environmental remediation.
-
-
-
[1]
[1] Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995,95(1):69-96
-
[2]
[2] Warren S C, Thimsen E. Energy Environ. Sci., 2012,5(1): 5133-5146
-
[3]
[3] Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010,39 (11):4206-4219
-
[4]
[4] Linic S, Christopher P, Ingram D B. Nat. Mater., 2011,10 (12):911-921
-
[5]
[5] Tong H, Ouyang S X, Bi Y P, et al. Adv. Mater., 2012,24(2): 229-251
-
[6]
[6] TANG Yu-Chao(唐玉朝), HUANG Xian-Huai(黄显怀), YU Han-Qing(俞汉青), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(11):1747-1751
-
[7]
[7] CHANG Lin(常琳), LIU Jing-Bing(刘晶冰), WANG Jin-Shu (王金淑), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(5):744-748
-
[8]
[8] CHEN Xiao-Yun(陈孝云), LU Dong-Fang(陆东芳), ZHANG Shu-Hui(张淑惠), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):307-313
-
[9]
[9] Wang P, Huang B B, Qin X, et al. Angew. Chem. Int. Ed., 2008,47(41):7931-7933
-
[10]
[10] Zhou X F, Hu C, Hu X X, et al. J. Phys. Chem. C, 2010, 114(6):2746-2750
-
[11]
[11] Yu J G, Dai G P, Huang B B. J. Phys. Chem. C, 2009,113 (37):16394-16401
-
[12]
[12] Elahifard M R, Rahimnejad S, Haghighi S, et al. J. Am. Chem. Soc., 2007,129(31):9552-9553
-
[13]
[13] Hu C, Hu X X, Wang L S, et al. Environ. Sci. Technol., 2006,40(24):7903-7907
-
[14]
[14] Guo J F, Ma B, Yin A, et al. J. Hazard. Mater., 2012,211: 77-82
-
[15]
[15] CAO Jing(曹静), LUO Bang-De(罗邦德), LIN Hai-Li (林海莉), et al. Environ. Chem., 2011,30(5):983-988
-
[16]
[16] WANG En-Hua(王恩华), LIU Su-Wen(刘素文), LI Tang-Gang(李堂刚), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(3):537-541
-
[17]
[17] Cao J, Luo B D, Lin H L, et al. J. Hazard. Mater., 2011,190 (1/2/3):700-706
-
[18]
[18] Hu C, Peng T W, Hu X X, et al. J. Am. Chem. Soc., 2010, 132(2):857-862
-
[19]
[19] Zhu M S, Chen P L, Liu M H. ACS Nano, 2011,5(6):4529-4536
-
[20]
[20] Cheng H F, Huang B B, Dai Y, et al. Langmuir, 2010,26(9): 6618-6624
-
[21]
[21] Cheng H H, Huang B B, Wang P, et al. Chem. Commun., 2011,47(25):7054-7056
-
[22]
[22] Rodrigues S, Uma S, Martyanov I N, et al. J. Catal., 2005, 233(2):405-410
-
[23]
[23] Kakuta N, Goto N, Ohkita H, et al. J. Phys. Chem. B, 1999, 103(29):5917-5919
-
[24]
[24] Stöber W, Fink A. J. Colloid Interface Sci., 1968,26(1):62-69
-
[25]
[25] An C H, Peng S, Sun Y G. Adv. Mater., 2010,22(23):2570-2574
-
[26]
[26] Wang J Z, An C H, Zhang M Y, et al. Can. J. Chem., 2012, 90(10):858-864
-
[27]
[27] Wang P, Huang B B, Lou Z Z, et al. Chem. Eur. J., 2010,16 (2):538-544
-
[28]
[28] Hsiao C N, Huang K S. J. Appl. Polym. Sci., 2005,96(5): 1936-1942
-
[29]
[29] Guiu G, Grange P. J. Catal., 1995,156(1):132-138
-
[30]
[30] Lassaletta G, Fernfindez A, Espinós J P, et al. J. Phys. Chem., 1995,99(5):1484-1490
-
[31]
[31] Ndiege N, Chandrasekharan R, Radadia A D, et al. Chem. Eur. J., 2011,17(27):7685-7693
-
[32]
[32] Tejeda J, Shevchick N J, Braun W, et al. Phys. Rev. B, 1975, 12(4):1557-1566
-
[33]
[33] Hamilton J F. Photogr. Sci. Eng., 1974,18(5):493-500
-
[34]
[34] Soni S S, Henderson M J, Bardeau J F, et al. Adv. Mater., 2008,20(8):1493-1498
-
[1]
-
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[3]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[4]
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
-
[5]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[6]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[7]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[8]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[9]
Ruolin CHENG , Yue WANG , Xiyao NIU , Huagen LIANG , Ling LIU , Shijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424
-
[10]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[11]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
-
[12]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[13]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[14]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[15]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
-
[16]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[17]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[18]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[19]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[20]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(383)
- HTML views(14)