Citation: TANG Jing-Long, WANG Shuo, LIU Li, WANG Chun-Ren, XI Ting-Fei. A Preliminary Study on the Dose-Effect Relation when Silver Nanoparticles Crossing through the Blood-Brain Barrier in vitro[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 1025-1030. doi: 10.3969/j.issn.1001-4861.2013.00.150 shu

A Preliminary Study on the Dose-Effect Relation when Silver Nanoparticles Crossing through the Blood-Brain Barrier in vitro

  • Corresponding author: TANG Jing-Long, 
  • Received Date: 25 December 2012
    Available Online: 21 January 2013

    Fund Project: 北京市自然科学基金(No.3112024) (No.3112024)中国食品药品检定研究院中青年发展研究基金(No.2009C4)资助项目。 (No.2009C4)

  • Objective:The aim of this study was to investigate the dose-effect relation of the ability that silver nanoparticles (SNPs) crossing through the blood-brain barrier (BBB) and presume its mechanism. Methods:In this study, SNPs were test samples and silver microparticles (SMPs) acted as control samples. First, an in vitro BBB model was established. Second, SNPs or SMPs were cultured in the BBB model at different dose from 25 μg·mL-1 to 400 μg·mL-1, respectively. After 4 hours of culture, the ultrastructure of BBB and the percentage of silver particles crossing through BBB were evaluated with TEM and ICP-MS respectively. Results:Results demonstrated that SNPs crossed the BBB, while the SMPs did not. When SNPS dose<100 μg·mL-1, about 2% silver particles crossed BBB, and the BBBs ultrastructures were normal. When dose>100 μg·mL-1, the higher dose is, the more silver particles crossed BBB, and the more damage occurred in the BBBs ultrastructures. When dose=400 μg·mL-1, about 15% silver particles crossed BBB. Conclusion:The results suggested that membrane-mobile transport mechanism is the main way allowing SNPs to cross the BBB in low dose. Cytotoxicity mechanism is the main way allowing SNPs to cross the BBB in higher dose. It is also suggested that SNPs could cross the BBB even in a low dose. A cautious attitude would be hold before silver nanoparticles-based medical devices were used in clinical practice.
  • 加载中
    1. [1]

      [1] Chen X, Schluesener H J. Toxicol Lett., 2008,176(1):1-12

    2. [2]

      [2] Martinez-Castanon G A, Nino-Martinez N, Martinez-Guiterrez F, et al. J. Nanoparticle Res., 2008,10(8):1343-1348

    3. [3]

      [3] Estores I M, Olsen D, Gómez-Marin O. J Rehabil Res Dev., 2008,45(1):135-139

    4. [4]

      [4] Vlachou E, Chipp E, Shale E, et al. Burns., 2007,3(8):979- 985

    5. [5]

      [5] Roe D, Karandikar B, Bonn-Savage N, et al. J Antimicrob Chemother., 2008,61(4):869-876

    6. [6]

      [6] Takenaka S, Karg E, Roth C, et al. Environ. Health Perspect., 2001,109(Suppl 4):547-551

    7. [7]

      [7] Tang J L, Xiong L, Wang S, et al. J. Nanosci. Nanotechnol., 2009,9(8):4924-4932

    8. [8]

      [8] TANG Jing-Long(汤京龙), XI Ting-Fei(奚廷斐), WEI Li-Na (魏丽娜), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2008,24(11):1827-1831

    9. [9]

      [9] Tang J L, Xiong L, Wang S, et al. Appl. Surface Sci., 2008,255(2):502-504

    10. [10]

      [10] TANG Jing-Long(汤京龙), XI Ting-Fei(奚廷斐), XIONG Ling(熊玲),et al. Transact. Mater. Heat Treat. (Cailiao Rechuli Xuebao), 2009,30(3):6-9

    11. [11]

      [11] Tang J L, Xiong L, Zhou G F,et al. J. Nanosci. Nanotechnol., 2010,10(10):6313-6317

    12. [12]

      [12] CHENG Ling-Zhong(成令钟), ZHONG Cui-Ping(钟翠萍), CAI Wen-Qin(蔡文琴). Contemporary Histology(现代组织 学). Shanghai: Scientific and Technological Literature Publishing House, 2003.

    13. [13]

      [13] U.S. Department of Health and Human Services, Food and Drug Administration. Guidance for Industry and FDA Premarket and Design Control Reviewers Medical Device Use-Safety: Incorporating Human Factors Engineering into Risk Management[N]. [2011-08-20]. http://www.fda.gov/ MedicalDevices/ DeviceRegulationand Guidance/Guidance Documents/ucm193096.htm

    14. [14]

      [14] State Food and Drug Administration(国家食品药品监督管 理局). YY/T 0316-2008 Medical devices Application of risk management to medical devices [S]. Beijing: Standards Press of China, 2009.

  • 加载中
    1. [1]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    7. [7]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    11. [11]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    12. [12]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    13. [13]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    14. [14]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    15. [15]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    16. [16]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    17. [17]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    20. [20]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

Metrics
  • PDF Downloads(0)
  • Abstract views(421)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return