Citation: ZHAO Xue-Ling, TANG Dao-Ping, MAI Yong-Jin, ZHAO Xin-Yue, WANG Su-Qing, ZHANG Ling-Zhi. Characterization of Li-Rich Cathode Material Li[Li0.2Ni0.2Mn0.6]O2 Synthesized by Sol-Gel Method for Lithium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 1013-1018. doi: 10.3969/j.issn.1001-4861.2013.00.149 shu

Characterization of Li-Rich Cathode Material Li[Li0.2Ni0.2Mn0.6]O2 Synthesized by Sol-Gel Method for Lithium-Ion Batteries

  • Corresponding author: ZHANG Ling-Zhi, 
  • Received Date: 3 December 2012
    Available Online: 22 January 2013

    Fund Project: 国家自然科学基金(No.50973112) (No.50973112)中国科学院院地合作项目(No.2009B091300025/20108) (No.2009B091300025/20108)中国科学院百人计划,广州市科技计划 (No.11A44061500)资助项目。 (No.11A44061500)

  • Li-rich solid solution cathode material Li[Li0.2Ni0.2Mn0.6]O2 was synthesized by a sol-gel method and subsequent solid-state sintering process, using LiOH·H2O, Mn(CH3COO)2·4H2O and H3COO)2·4H2O as raw materials, and citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) as chelating agents, respectively. The as-synthesized materials were characterized by X-ray diffraction, scanning electron microscope and Laser Particle Size Analyzer, and the electrochemical properties of materials were investigated. The material using CA as chelating agent showed higher capacity and better rate performance than that using EDTA as chelating agent. The half-cell of Li/Li[Li0.2Ni0.2Mn0.6]O2 using CA as chelating agent delivered a charge specific capacity of 324 mAh·g-1 with an initial efficiency of 82% at a current density of 18 mA·g-1 between 2.0 and 4.8 V, and retained the reversible capacity of 120 mAh·g-1 even at a high current density of 180 mA·g-1.
  • 加载中
    1. [1]

      [1] Ohzuku T, Ueda A, Nagayama M, et al. Electrochim. Acta, 1993,38(9):1159-1167

    2. [2]

      [2] WANG Jian(王剑), QI Lu(其鲁), KE Ke(柯克), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2004,20(6):635-640

    3. [3]

      [3] Armstrong A R, Bruce P G. Nature, 1996,381(6582):499-500

    4. [4]

      [4] Ohzuku T, Makimura Y. Chem. Lett., 2001,30(7):642-643

    5. [5]

      [5] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194

    6. [6]

      [6] Liu W, Farrington G C, Chaput F, et al. J. Electrochem. Soc., 1996,143(3):879-884

    7. [7]

      [7] Naji A, Ghanbaja J, Humbert B, et al. J. Power Sources, 1996,63(1):33-39

    8. [8]

      [8] Lu Z H, MacNeil D D, Dahn J R. Electrochem. Solid St, 2001,4(11):A191-A194

    9. [9]

      [9] Shin S S, Sun K, Amine K. J. Power Sources, 2001,112(2): 634-638

    10. [10]

      [10] Kim J S, Johnson C S, Thackeray M M. Electrochem. Commun., 2002,4(3):205-209

    11. [11]

      [11] Kang S H, Thackeray M M. J. Electrochem. Soc., 2008,155 (4):A269-A275

    12. [12]

      [12] Croy J R, Kang S H, Balasubramanian M, et al. Electrochem. Commun., 2011,13(10):1063-1066

    13. [13]

      [13] LI Jie-Bin(李节宾), XU You-Long(徐友龙), DONG Xin(董 鑫), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(6):1125-1130

    14. [14]

      [14] Kang S H, Sun Y K, Amine K. Electrochem. Solid St, 2003, 6(9):A183-A186

    15. [15]

      [15] Kang Y, Kim J, Lee S, et al. Electrochim. Acta, 2005,50 (24):4784-4791

    16. [16]

      [16] Lee D K, Park S H, Amine K, et al. J. Power Sources, 2006, 162(2):1346-1350

    17. [17]

      [17] Xu H Y, Wang Q Y, Chen C H. J. Solid State Electrochem, 2008,12(9):1173-1178

    18. [18]

      [18] DU Ke(杜柯), HUANG Xia(黄霞), YANG Fei(杨菲), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(5): 983-988

    19. [19]

      [19] Johnson C S, Kim J S, Lefief C, et al. Electrochem. Commun., 2004,6(10):1085-1091

    20. [20]

      [20] Johnson C S, Li N C, Lefief C, et al. Electrochem. Commun., 2007,9(4):787-795

    21. [21]

      [21] Kim J H, Park C W, Sun Y K. Solid State Ionics, 2003,164 (1-2):43-49

    22. [22]

      [22] Park S H, Sun Y K. J. Power Sources, 2003,119-121:161- 165

    23. [23]

      [23] Zheng J M, Wu X B, Yang Y. Electrochim. Acta, 2011,56 (8):3071-3078

    24. [24]

      [24] Tang A, Huang K. Mater. Chem. Phys., 2005,93(1):6-9

    25. [25]

      [25] Lim J H, Bang H, Lee K S, et al. J. Power Sources, 2009, 189(1):571-575

    26. [26]

      [26] Lee Y, Kim M G, Cho J. Nano Letters, 2008,8(3):957-961

    27. [27]

      [27] Huang X K, Zhang Q S, Chang H T, et al. J. Electrochem. Soc., 2009,156(3):A162-A168

    28. [28]

      [28] Numata K, Sakaki C, Yamanaka S. Solid State Ionics, 1999, 117(3-4):257-263

    29. [29]

      [29] YUE Hong-Fei(岳鸿飞). Thesis for the Master of Graduate School of the Chinese Academy of Science(中国科学院研 究生院). 2007.

    30. [30]

      [30] Hwang B J, Wang C J, Chen C H, et al. J. Power Sources, 2005,146(1-2):658-663

    31. [31]

      [31] Wu F, Lu H, Su Y, et al. J. Appl. Electrochem., 2009,40(4): 783-789

    32. [32]

      [32] Ohzuku T, Ueda A, Nagayama M. J. Electrochem. Soc., 1993,140(7):1862-1870

    33. [33]

      [33] Dahn J R, Vonsacken U, Michal C A. Solid State Ionics, 1990,44(1-2):87-97

    34. [34]

      [34] Wu F, Li N, Su Y, et al. J. Mater. Chem., 2012,22(4):1489- 1497

    35. [35]

      [35] Liu Y, Liu S, Wang Y, et al. J. Power Sources, 2013,222: 455-460

    36. [36]

      [36] DU Ke(杜柯), HUANG Xia(黄霞), HU Guo-Rong(胡国荣), et al. Chin. J. Nonferr. Metals(Zhongguo Youse Jinshu Xuebao), 2012,22(4):1201-1208

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    9. [9]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    10. [10]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    11. [11]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    13. [13]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    14. [14]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    15. [15]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

Metrics
  • PDF Downloads(485)
  • Abstract views(1381)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return