Citation: ZHAO Xue-Ling, TANG Dao-Ping, MAI Yong-Jin, ZHAO Xin-Yue, WANG Su-Qing, ZHANG Ling-Zhi. Characterization of Li-Rich Cathode Material Li[Li0.2Ni0.2Mn0.6]O2 Synthesized by Sol-Gel Method for Lithium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 1013-1018. doi: 10.3969/j.issn.1001-4861.2013.00.149 shu

Characterization of Li-Rich Cathode Material Li[Li0.2Ni0.2Mn0.6]O2 Synthesized by Sol-Gel Method for Lithium-Ion Batteries

  • Corresponding author: ZHANG Ling-Zhi, 
  • Received Date: 3 December 2012
    Available Online: 22 January 2013

    Fund Project: 国家自然科学基金(No.50973112) (No.50973112)中国科学院院地合作项目(No.2009B091300025/20108) (No.2009B091300025/20108)中国科学院百人计划,广州市科技计划 (No.11A44061500)资助项目。 (No.11A44061500)

  • Li-rich solid solution cathode material Li[Li0.2Ni0.2Mn0.6]O2 was synthesized by a sol-gel method and subsequent solid-state sintering process, using LiOH·H2O, Mn(CH3COO)2·4H2O and H3COO)2·4H2O as raw materials, and citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) as chelating agents, respectively. The as-synthesized materials were characterized by X-ray diffraction, scanning electron microscope and Laser Particle Size Analyzer, and the electrochemical properties of materials were investigated. The material using CA as chelating agent showed higher capacity and better rate performance than that using EDTA as chelating agent. The half-cell of Li/Li[Li0.2Ni0.2Mn0.6]O2 using CA as chelating agent delivered a charge specific capacity of 324 mAh·g-1 with an initial efficiency of 82% at a current density of 18 mA·g-1 between 2.0 and 4.8 V, and retained the reversible capacity of 120 mAh·g-1 even at a high current density of 180 mA·g-1.
  • 加载中
    1. [1]

      [1] Ohzuku T, Ueda A, Nagayama M, et al. Electrochim. Acta, 1993,38(9):1159-1167

    2. [2]

      [2] WANG Jian(王剑), QI Lu(其鲁), KE Ke(柯克), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2004,20(6):635-640

    3. [3]

      [3] Armstrong A R, Bruce P G. Nature, 1996,381(6582):499-500

    4. [4]

      [4] Ohzuku T, Makimura Y. Chem. Lett., 2001,30(7):642-643

    5. [5]

      [5] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194

    6. [6]

      [6] Liu W, Farrington G C, Chaput F, et al. J. Electrochem. Soc., 1996,143(3):879-884

    7. [7]

      [7] Naji A, Ghanbaja J, Humbert B, et al. J. Power Sources, 1996,63(1):33-39

    8. [8]

      [8] Lu Z H, MacNeil D D, Dahn J R. Electrochem. Solid St, 2001,4(11):A191-A194

    9. [9]

      [9] Shin S S, Sun K, Amine K. J. Power Sources, 2001,112(2): 634-638

    10. [10]

      [10] Kim J S, Johnson C S, Thackeray M M. Electrochem. Commun., 2002,4(3):205-209

    11. [11]

      [11] Kang S H, Thackeray M M. J. Electrochem. Soc., 2008,155 (4):A269-A275

    12. [12]

      [12] Croy J R, Kang S H, Balasubramanian M, et al. Electrochem. Commun., 2011,13(10):1063-1066

    13. [13]

      [13] LI Jie-Bin(李节宾), XU You-Long(徐友龙), DONG Xin(董 鑫), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(6):1125-1130

    14. [14]

      [14] Kang S H, Sun Y K, Amine K. Electrochem. Solid St, 2003, 6(9):A183-A186

    15. [15]

      [15] Kang Y, Kim J, Lee S, et al. Electrochim. Acta, 2005,50 (24):4784-4791

    16. [16]

      [16] Lee D K, Park S H, Amine K, et al. J. Power Sources, 2006, 162(2):1346-1350

    17. [17]

      [17] Xu H Y, Wang Q Y, Chen C H. J. Solid State Electrochem, 2008,12(9):1173-1178

    18. [18]

      [18] DU Ke(杜柯), HUANG Xia(黄霞), YANG Fei(杨菲), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(5): 983-988

    19. [19]

      [19] Johnson C S, Kim J S, Lefief C, et al. Electrochem. Commun., 2004,6(10):1085-1091

    20. [20]

      [20] Johnson C S, Li N C, Lefief C, et al. Electrochem. Commun., 2007,9(4):787-795

    21. [21]

      [21] Kim J H, Park C W, Sun Y K. Solid State Ionics, 2003,164 (1-2):43-49

    22. [22]

      [22] Park S H, Sun Y K. J. Power Sources, 2003,119-121:161- 165

    23. [23]

      [23] Zheng J M, Wu X B, Yang Y. Electrochim. Acta, 2011,56 (8):3071-3078

    24. [24]

      [24] Tang A, Huang K. Mater. Chem. Phys., 2005,93(1):6-9

    25. [25]

      [25] Lim J H, Bang H, Lee K S, et al. J. Power Sources, 2009, 189(1):571-575

    26. [26]

      [26] Lee Y, Kim M G, Cho J. Nano Letters, 2008,8(3):957-961

    27. [27]

      [27] Huang X K, Zhang Q S, Chang H T, et al. J. Electrochem. Soc., 2009,156(3):A162-A168

    28. [28]

      [28] Numata K, Sakaki C, Yamanaka S. Solid State Ionics, 1999, 117(3-4):257-263

    29. [29]

      [29] YUE Hong-Fei(岳鸿飞). Thesis for the Master of Graduate School of the Chinese Academy of Science(中国科学院研 究生院). 2007.

    30. [30]

      [30] Hwang B J, Wang C J, Chen C H, et al. J. Power Sources, 2005,146(1-2):658-663

    31. [31]

      [31] Wu F, Lu H, Su Y, et al. J. Appl. Electrochem., 2009,40(4): 783-789

    32. [32]

      [32] Ohzuku T, Ueda A, Nagayama M. J. Electrochem. Soc., 1993,140(7):1862-1870

    33. [33]

      [33] Dahn J R, Vonsacken U, Michal C A. Solid State Ionics, 1990,44(1-2):87-97

    34. [34]

      [34] Wu F, Li N, Su Y, et al. J. Mater. Chem., 2012,22(4):1489- 1497

    35. [35]

      [35] Liu Y, Liu S, Wang Y, et al. J. Power Sources, 2013,222: 455-460

    36. [36]

      [36] DU Ke(杜柯), HUANG Xia(黄霞), HU Guo-Rong(胡国荣), et al. Chin. J. Nonferr. Metals(Zhongguo Youse Jinshu Xuebao), 2012,22(4):1201-1208

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(485)
  • Abstract views(1192)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return