Citation: LIU Qiang, YANG Qiu-Hong, ZHAO Guang-Gen, LU Shen-Zhou, ZHANG Hao-Jia. Effect of TiO2 Content on the Properties of Ceria-Stabilized Zirconia Cubic Ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 798-802. doi: 10.3969/j.issn.1001-4861.2013.00.144 shu

Effect of TiO2 Content on the Properties of Ceria-Stabilized Zirconia Cubic Ceramics

  • Received Date: 5 November 2012
    Available Online: 26 December 2012

    Fund Project: 国家自然科学基金(No. 60578041) (No. 60578041)上海市科委国际合作基金(No.08520707300)资助项目。 (No.08520707300)

  • In this paper, ceria-stabilized zirconia cubic ceramics with high hardness were fabricated by pressureless sintering processing. The microstructure, XRD, Vickers hardness and relative density of the ceramics were investigated. Effects of TiO2 content (in mole) on relative density and Vickers hardness of Zr0.8Ce0.2O2 ceramics were also studied. The results show that TiO2 can effectively inhibit excessive grain growth, eliminate residual pores and promote sintering. The highest Vickers hardness is 20.2 GPa. The maximum relative density reaches up to 99.8%.
  • 加载中
    1. [1]

      [1] Piconi C, Maccauro G. Biomaterials, 1999,20:1-25

    2. [2]

      [2] Theunissen G S A M, Bouma J S, Winnubst A J A, et al. J. Mater. Sci, 1992,27:4429-4438

    3. [3]

      [3] SUN Jing-Jing(孙婧婧), LI Si-Wei(李思维), FENG Zu-De (冯祖德). Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009,25(3):480-484

    4. [4]

      [4] Kelly J R, Denry I. Dental Mater., 2008,24:289-298

    5. [5]

      [5] Jiang S S, Schulze W A, Amarakoon V R W, et al. J. Mater. Res., 1997,12:2374-2380

    6. [6]

      [6] Scott H G. J. Mater. Sci., 1975,10:1527-1535

    7. [7]

      [7] MA Tian(马天), YANG Jin-Long(杨金龙), ZHANG Li-Ming (张立明), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2004,20(2):121-127[8] MAO Jin-Long(毛金龙), GUO Sheng-Hui(郭胜惠), PENG Jin-Hui(彭金辉), et al. Inorg. Chem. Ind.(Wujiyan Gongye), 2008,40(1):5-7

    8. [8]

      [9] REN Yong-Guo(任永国), LIU Zi-Qiang(刘自强), YANG Kai (杨凯), et al. China Ceram.(Zhongguo Taoci), 2008,44(4):44-46

    9. [9]

      [10] ZHANG Can-Ying(张灿英), ZHU Hai-Tao(朱海涛), LI Chang-Jiang(李长江), et al. Rare Metal Mater. Eng.(Xiyou Jinshu Cailiao Yu Gongcheng), 2007,31(1):266-268

    10. [10]

      [11] Garvie R C, Hannink R H, Pascoe R T. Nature, 1975,258: 703-704

    11. [11]

      [12] ZHANG Qing-Jie(张庆杰), ZHANG Jian-Jun(张建军), ZHOU Yan-Xia(周艳霞). Inorg. Chem. Ind.(Wujiyan Gongye), 1998,30(6):21-22

    12. [12]

      [13] Wolten G M. J. Am. Ceram. Soc., 1963,46(9):418-422

    13. [13]

      [14] Hannink R H J, Kelly P M, Muddle B C. J. Am. Ceram. Soc., 2000,83(3):461-487

    14. [14]

      [15] Tsukuma K J. J. Mater. Sci. Lett., 1986,5:1143-1144

    15. [15]

      [16] Muccillo E N S, Avila D M. Ceram. Inter., 1999,25:345-351

    16. [16]

      [17] YANG Shi-Gang(杨式刚), CHEN Kai(陈楷). J. Chin. Ceram. Soc. (Guisuanyan Xuebao), 1989,17(6):514-521

    17. [17]

      [18] CHENG Shi-Bing(陈士冰), WANG Shi-Feng(王世峰), LI Liang(李亮). Bull. Chin. Ceram. Soc. (Guisuanyan Tongbao), 2011,30(3):724-735

    18. [18]

      [19] LIN Zhen-Han(林振汉). Rare Metals Lett. (Xiyou Jinshu Kuaibao), 2007,26(1):57-68

    19. [19]

      [20] ZHOU Yu(周玉). Material Analysis and Measurement Technology(材料分析测试技术). Heilongjiang: Harbin Institute of Technology Press, 1998.18-29

    20. [20]

      [21] FAN Xian-Ping(樊先平), HONG Zhang-Lian(洪樟连), WENG Wen-Jian(翁文剑). Inorganic Non-metallic Materials Science Foundation(无机非金属材料科学基础). Hangzhou: Zhejiang University Press, 2004:276-280

  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    10. [10]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    14. [14]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

Metrics
  • PDF Downloads(0)
  • Abstract views(892)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return