Citation: CAI Fan, SHEN Xiao-Chen, DAI Min, GAO Ming, WANG Zhi-Bin, ZHAO Bin, DING Wei-Ping. Catalytic Performance of CoB/C for Hydrolysis of NaBH4 Aqueous Solution[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 689-696. doi: 10.3969/j.issn.1001-4861.2013.00.143 shu

Catalytic Performance of CoB/C for Hydrolysis of NaBH4 Aqueous Solution

  • Received Date: 13 November 2012
    Available Online: 16 January 2013

    Fund Project: 江苏省自然科学基金(No.BK2010387) (No.BK2010387)国家自然科学基金(No.41172239) (No.41172239)中央高校基础科研业务费专项基金(No.1118020513, 1106020513)资助项目。 (No.1118020513, 1106020513)

  • The activated carbon supported CoB catalysts were prepared by using impregnation-reduction method (denoted as CoB/C-Imp) and electroless deposition method (denoted as CoB/C-ED), respectively. The catalytic properties were studied on the hydrolysis of NaBH4 aqueous solution. The catalytic activity of CoB/C-ED, CoB/C-Imp and unsupported CoB was 2 022, 2 503 and 1 351 mL·min-1·g-1 (Co), respectively. After 5 cycles, the CoB/C-ED could retain 70% initial activity, but CoB/C-Imp and unsupported CoB could only retain 30% and 10% initial activity. The CoB/C-ED shows the best catalytic performance. Furthermore, no obvious decrease in the activity is observed for CoB/C-ED even after it is exposed to air for 30 days, this good anti-oxidation property is favorable for storage and use. Further physicochemical characterization of these catalysts reveals that the unsupported CoB is easily agglomerated and the size of the secondary particles is in the range of 400~800 nm. After CoB supported on carbon, the agglomeration is greatly restrained. The dispersion of CoB for the CoB/C catalysts is improved compared to the unsupported CoB. The support could also reduce the agglomeration of CoB particles during the catalytic reaction. The CoB particles combine much stronger with the activated carbon support for the CoB/C-ED catalyst, thus resulting in better dispersion and stability, and lesser leaching.
  • 加载中
    1. [1]

      [1] Marrero-Alfonso E Y, Beaird A M, Davis T A, et al. Ind. Eng. Chem. Res., 2009,48(3):3703-3712

    2. [2]

      [2] Rangel C M, Fernandes V R, Slavkov Y, et al. Int. J. Hydrogen Energy, 2009,34(10):4587-4591

    3. [3]

      [3] Kunowsky M, Weinberger B, Lamari Darkrim F, et al. Int. J. Hydrogen Energy, 2008,33(12):3091-3095

    4. [4]

      [4] Binwale R B, Rayalu S, Devotta S, et al. Int. J. Hydrogen Energy, 2008,33(1):360-5

    5. [5]

      [5] Eberle U, Felderhoff M, Schuth F. Angew. Chem. Int. Ed., 2009,48(36):6608-6630

    6. [6]

      [6] Kojima Y, Suzuki K, Fukumoto K, et al. Int. J. Hydrogen Energy, 2002,27(10):1029-1034

    7. [7]

      [7] Kojima Y, Suzuki K, Fukumoto K, et al. J. Power Sources, 2004,125(1):22-26

    8. [8]

      [8] Demirci U B, Garin F. J. Alloys Compd., 2008,463(1-2):107-111

    9. [9]

      [9] Jeong S U, Cho E A, Nam S W, et al. Int. J. Hydrogen Energy, 2007,32(12):1749-1754

    10. [10]

      [10] Ingersoll J C, Mani N, Thenmozhiyal J C, et al. J. Power Sources, 2007,173(1):450-457

    11. [11]

      [11] Murat R, Saim Ö. Catal. Today, 2012,183(1):17-25

    12. [12]

      [12] Ye W, Zhang H M, Xu D Y, et al. J. Power Sources, 2007, 164(2):544-548

    13. [13]

      [13] Xu D Y, Dai P, Guo Q J, et al. Int. J. Hydrogen Energy, 2008,33(24):7371-7377

    14. [14]

      [14] Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X- ray Photoelectron Spectroscopy. Eden Prairie: Physical Electronics Inc., 1995:38-39,82-83

    15. [15]

      [15] Gorbunova K M, Ivanov M V, Moiseev V P. J. Electrochem. Soc., 1973,120(5):613-618

    16. [16]

      [16] Mallory G O, Hajdu J B. Electroless Plating-Fundamentals and Applications. New York: William Andrew Publishing/ Noyes, 1990:463-511

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      Xinyue Zhang Yifeng Ding Ning Ma . Research on the “Project-based” Master’s Degree Model for Graduate Students in Materials and Chemical Engineering. University Chemistry, 2024, 39(6): 98-102. doi: 10.3866/PKU.DXHX202312093

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    15. [15]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    16. [16]

      Sheng Zhang Mingyu Wang Xiaohong Wang Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

Metrics
  • PDF Downloads(236)
  • Abstract views(707)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return