Citation: MAO Yan, ZHANG Chuan-Hui, ZHANG Yang, WANG Qi, XU Gui-Liang, HUANG Ling, LI Jun-Tao, SUN Shi-Gang. Synthesis and Electrochemical Performance of Novel Expanded Graphite Oxide/Sulfur Composite Cathodes for Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 889-895. doi: 10.3969/j.issn.1001-4861.2013.00.141 shu

Synthesis and Electrochemical Performance of Novel Expanded Graphite Oxide/Sulfur Composite Cathodes for Lithium-Sulfur Batteries

  • Corresponding author: HUANG Ling, 
  • Received Date: 1 December 2012
    Available Online: 6 January 2013

    Fund Project: 国家“973”计划(No.2009CB220102) (No.2009CB220102)国家基础科学人才培养计划(No.J1210014)资助项目。 (No.J1210014)

  • The expanded graphite oxides were prepared by modified Hummers method. The expanded graphite oxide/sulfur (E-GO/S) composites have been successfully prepared by a new chemical reaction method based on comproportionation in the acidic aqueous solution. FT-IR, XPS were characterized the existence of functional groups on the surface of expanded graphite oxide. XRD results showed that the as-prepared sulfur belongs to orthorhombic system. SEM and TEM results indicated the uniform distribution of the sulfur in the composite. The electrochemical test showed that the expanded graphite oxide/sulfur (E-GO/S) composites can deliver the highest discharge capacity of 1 020 mAh·g-1 at the first cycle, after 100 cycles of charge-discharge, the discharge capacity of the composites keep the capacity of ca. 650 mAh·g-1, and have the excellent rate performance and coulombic efficiency that may be attributed to the homogeneous distribution of sulfur in the composites and the chemical approach to fix sulfur and the lithium polysulfides via the chemical bonds with the functional groups on the surface of expanded graphite oxide.
  • 加载中
    1. [1]

      [1] Marmorstein D, Yu T H, Striebel K A, et al. J. Power Sources, 2000,89:219-226

    2. [2]

      [2] Peled E, Gorenshtain A, Segal M, et al. J. Power Sources, 1989,26:269-271

    3. [3]

      [3] Jin B, Kim J, Gu H, J. Power Sources, 2003,117:148-152

    4. [4]

      [4] Liang C, Dudney N. J, Howe N. J, Chem. Mater., 2009,21: 4724-4730

    5. [5]

      [5] Hassoun J, Scrosati B. Angew. Chem. Int. Ed., 2010,49:2371- 2374

    6. [6]

      [6] Cheon S E, Ko K S, Cho J H, et al. J. Electrochem. Soc., 2003,150:A800-A805

    7. [7]

      [7] Zheng G Y, YuanY, Cha J J, et al. Nano Lett., 2011,11:4462 -4467

    8. [8]

      [8] WU Ying-Lei(伍英蕾), YANG Jun(杨军), WANG Jiu-Lin(王 久林), et al. Acta. Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2010,26(2):283-290

    9. [9]

      [9] Zheng W, Liu Y W, Hu X G, et al. Electro. Acta, 2006,51: 1330-1335

    10. [10]

      [10] MA Ping(马萍), ZHANG Bao-Hong(张宝宏), XU Yu-Hong (徐宇虹), et al. Mod. Chem. Ind.(Xiandai Huagong), 2007, 27(3):30-33

    11. [11]

      [11] Wang J, Chen J, Konstantinov K, et al. Electrochim. Acta, 2006,51:4634-4638

    12. [12]

      [12] Liang X, Wen Z Y, Liu Y, et al. Solid State Ionics, 2011, 192:347-350

    13. [13]

      [13] Ji X L, Lee K T, Nazar L F, Nat. Mater., 2009,8:500-506

    14. [14]

      [14] Chen S R, Zhai Y P, Xu G L, et al. Electrochim. Acta, 2011,56:9549-9555

    15. [15]

      [15] Wang J Z, Lu L, Choucairc M, et al. J. Power Sources, 2011,196:7030-7034

    16. [16]

      [16] Aurbach D, Pollak E, Elazari R, et al. J. Electrochem. Soc., 2009,156:A694-A702

    17. [17]

      [17] Liang X, Wen Z Y, Liu Y, et al. J. Power Sources, 2011, 196:9839-9843

    18. [18]

      [18] Ji L W, Rao M, Zheng H M, et al. J. Am. Chem. Soc., 2011, 133:18522-18525

    19. [19]

      [19] Hirata M, Gotou T, Horiuchi S, et al. Carbon, 2004,42:2929 -2937

    20. [20]

      [20] Ji L, Tan Z, Kuykendall T R, et al. Phys. Chem. Chem. Phys., 2011,13:7170-7177

    21. [21]

      [21] Ji F, Li Y L, Feng J M, et al. J. Mater. Chem., 2009,19: 9063-9067

    22. [22]

      [22] Lee K R, Lee K U, Lee J W, et al. Electrochem. Commun., 2010,12:1052-1055

    23. [23]

      [23] Tischer R P. Sulfur Electrode. New York: Academic Press, 1983:220

    24. [24]

      [24] Wagner C D, Riggs W H, Davis L E, et al. A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy, Perkin Elmer Corp., Eden-Prairie, 1979.

    25. [25]

      [25] Pietrzak R, Wachowska H, Fuel Processing Technology, 2006,87:1021-1029

    26. [26]

      [26] Littlejohn D, Chang S G, J. Electron Spectrosc. Related Phenomena, 1995,71:47-50

    27. [27]

      [27] Demir-Cakan R, Morcrette M, Nouar M, et al. J. Am. Chem. Soc., 2011,133:16154-16160

    28. [28]

      [28] Sun M M, Zhang S C, Jiang T, et al. Electrochem. Commun., 2008,10:1819-1822

    29. [29]

      [29] Aurbach D, Gamolsky K, Markovsky B, Electrochim. Acta, 2002,47:1423-1439

    30. [30]

      [30] Wang Y X, Huang L, Sun L C,et al. J. Mater. Chem., 2012, 22:4744-4750

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    20. [20]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

Metrics
  • PDF Downloads(505)
  • Abstract views(593)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return