Citation: DU Ke, YANG Fei, HU Guo-Rong, PENG Zhong-Dong, CAO Yan-Bing. Studies on the Effects from Citric Acid and Ammonium Citrate Tribasic Treatment on Electrochemical Performance of Li[Li0.2Mn0.54Ni0.13 Co0.13]O2[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 786-792. doi: 10.3969/j.issn.1001-4861.2013.00.139 shu

Studies on the Effects from Citric Acid and Ammonium Citrate Tribasic Treatment on Electrochemical Performance of Li[Li0.2Mn0.54Ni0.13 Co0.13]O2

  • Received Date: 1 November 2012
    Available Online: 27 December 2012

  • In order to improve the initial charge/discharge efficiency and rate performance of Li[Li0.2Co0.13Ni0.13Mn0.54]O2, we used citric acid and ammonium citrate tribasic to treat the materiel Li[Li0.2Co0.13Ni0.13Mn0.54]O2, which was synthesized by carbonation co-precipitated method. After surface modification, Emission Spectrometer (ICP-AES) analysis showed that lithium is the major element of the filtrate, 16.37wt% and 13.14wt% of lithium elements dissolved out during the pretreatment stage respectively, and a small amount of transition metals desorpted in this process. The charging/discharging test revealed that the materials treated by 20% of citric acid and ammonium citrate tribasic performed higher initial efficiency (80.2% and 80.7%), After 40 cycles with 0.2C cycle, the capacity retention rate increased to 97.42% and 92.70% from 91.43%, and the capacity at 1C increased to 179.5 mAh·g-1, 181.5 mAh·g-1, respectively. The results showed that after the treatment of citric acid and ammonium citrate tribasic, material properties and the rate performance were both improved.
  • 加载中
    1. [1]

      [1] Thackeray M M, Kang S H, Johnson, C S, et al. J. Mater. Chem., 2007,17:3112-3125

    2. [2]

      [2] Lim J H, Bang H, Lee K S, et al. J. Power Sources, 2009, 189:571-575

    3. [3]

      [3] Johnson C S, Li N, Lefief C, et al. Electrochem. Commun., 2007,9:787-795

    4. [4]

      [4] Lu Z, Dahn J R. J. Electrochem. Soc., 2002,149(7):A815-A822

    5. [5]

      [5] Armstrong A R, Holzapfel M, Novak P, et al. J. Am. Chem. Soc., 2006,128:8694-8698

    6. [6]

      [6] Liu J, Reeja J B, Manthiram A. J. Phys. Chem. C, 2010,114: 9528-9533

    7. [7]

      [7] Wu Y, Manthiram A. Electrochem. Solid-State Lett., 2006,9 (5):A221-A224

    8. [8]

      [8] Jung Y S, Cavanagh A S, Yan Y, et al. J. Electrochem. Soc., 2011,158(12):A1298-A1302

    9. [9]

      [9] Zhao Y, Zhao C, Feng H, et al. Electrochem. Solid-State Lett., 2011,14(1):A1-A5

    10. [10]

      [10] Zheng J M, Li J, Zhang Z R, et al. Solid State Ionics, 2008, 179:1794-1799

    11. [11]

      [11] ZHENG Jian-Ming(郑建明), YANG Yong(杨勇). Proceedings of The 14th National Conference on Solid State Ionics(第十 四届全国固态离子学学术会议), Xiamen:[s.n.], 2008:B38

    12. [12]

      [12] Wu Y, Murugan A V, Manthiram A. J. Electrochem., Soc., 2008,155(9):A635-A641

    13. [13]

      [13] Wang Q Y, Liu J, Murugan A V. J. Mater Chem., 2009,19: 4965-4972

    14. [14]

      [14] Kang S H, Thackeray M M. Electrochem. Commun., 2009, 11:748-751

    15. [15]

      [15] Lee S H, Koo B K, Kim J C, et al. J. Power Sources, 2008, 184:276-283

    16. [16]

      [16] Liu J, Wang Q, Reeja J B, et al. Electrochem. Commun., 2010,12:750-753

    17. [17]

      [17] WU Xiao-Biao(吴晓彪), DONG Zhi-Xin(董志鑫), ZHEN Jian-Ming(郑建明), et al. J. Xiamen Univ.: Nat. Sci.(Xiamen Daxue Xuebao: Ziran Kexueban), 2008,47(2):224-227

    18. [18]

      [18] Gao J, Manthiram A. J. Power Sources, 2009,191:644-647

    19. [19]

      [19] Gao J, Kim J, Manthiram A. Electrochem. Commun., 2009, 11:84-86

    20. [20]

      [20] Lee E S, Manthiram A. J. Electrochem. Soc., 2011,158(1): A47-A50

    21. [21]

      [21] Kang S H, Johnson C S, Vaughey J T, et al. J. Electrochem. Soc., 2006,153(6):A1186-A1192

    22. [22]

      [22] Kang S H, Thackeray M M. J. Electrochem. Soc., 2008,155 (4):A269-A275

    23. [23]

      [23] Denis Y W Y, Katsunori Y, Hiroshi N. J. Electrochem. Soc., 2010,157(11):A1177-A1182

    24. [24]

      [24] DU Ke(杜柯),HUANG Xia(黄霞),YANG Fei(杨菲), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(5): 983-988

    25. [25]

      [25] Gao Y, Yakovleva M V, Ebner W B. Electrochem. Solid-State Lett., 1998,1(3):117-119

    26. [26]

      [26] Lu C H, Wang H C. J. Electrochem. Soc., 2005,152(6):C341 -C347

    27. [27]

      [27] Breger J, Jiang M, Dupré N, et al. J. Solid State Chem., 2005,178:2575-2585

    28. [28]

      [28] Lu Z, Beaulieu L Y, Donaberger R A, et al. J. Electrochem. Soc., 2002,149(6):A778-A791

    29. [29]

      [29] Park Y J, Hong Y S, Wu X, et al. J. Power Sources, 2004, 129:288-295

    30. [30]

      [30] Thackeray M M, Johnson C S, Li N, et al. US Patent, 7303840 B2. 2007-12-4.

    31. [31]

      [31] Yu L, Qiu W, Lian F, et al. J. Alloys Compd., 2009,471:317 -321

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(359)
  • Abstract views(962)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return