Citation: DU Ke, YANG Fei, HU Guo-Rong, PENG Zhong-Dong, CAO Yan-Bing. Studies on the Effects from Citric Acid and Ammonium Citrate Tribasic Treatment on Electrochemical Performance of Li[Li0.2Mn0.54Ni0.13 Co0.13]O2[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 786-792. doi: 10.3969/j.issn.1001-4861.2013.00.139 shu

Studies on the Effects from Citric Acid and Ammonium Citrate Tribasic Treatment on Electrochemical Performance of Li[Li0.2Mn0.54Ni0.13 Co0.13]O2

  • Received Date: 1 November 2012
    Available Online: 27 December 2012

  • In order to improve the initial charge/discharge efficiency and rate performance of Li[Li0.2Co0.13Ni0.13Mn0.54]O2, we used citric acid and ammonium citrate tribasic to treat the materiel Li[Li0.2Co0.13Ni0.13Mn0.54]O2, which was synthesized by carbonation co-precipitated method. After surface modification, Emission Spectrometer (ICP-AES) analysis showed that lithium is the major element of the filtrate, 16.37wt% and 13.14wt% of lithium elements dissolved out during the pretreatment stage respectively, and a small amount of transition metals desorpted in this process. The charging/discharging test revealed that the materials treated by 20% of citric acid and ammonium citrate tribasic performed higher initial efficiency (80.2% and 80.7%), After 40 cycles with 0.2C cycle, the capacity retention rate increased to 97.42% and 92.70% from 91.43%, and the capacity at 1C increased to 179.5 mAh·g-1, 181.5 mAh·g-1, respectively. The results showed that after the treatment of citric acid and ammonium citrate tribasic, material properties and the rate performance were both improved.
  • 加载中
    1. [1]

      [1] Thackeray M M, Kang S H, Johnson, C S, et al. J. Mater. Chem., 2007,17:3112-3125

    2. [2]

      [2] Lim J H, Bang H, Lee K S, et al. J. Power Sources, 2009, 189:571-575

    3. [3]

      [3] Johnson C S, Li N, Lefief C, et al. Electrochem. Commun., 2007,9:787-795

    4. [4]

      [4] Lu Z, Dahn J R. J. Electrochem. Soc., 2002,149(7):A815-A822

    5. [5]

      [5] Armstrong A R, Holzapfel M, Novak P, et al. J. Am. Chem. Soc., 2006,128:8694-8698

    6. [6]

      [6] Liu J, Reeja J B, Manthiram A. J. Phys. Chem. C, 2010,114: 9528-9533

    7. [7]

      [7] Wu Y, Manthiram A. Electrochem. Solid-State Lett., 2006,9 (5):A221-A224

    8. [8]

      [8] Jung Y S, Cavanagh A S, Yan Y, et al. J. Electrochem. Soc., 2011,158(12):A1298-A1302

    9. [9]

      [9] Zhao Y, Zhao C, Feng H, et al. Electrochem. Solid-State Lett., 2011,14(1):A1-A5

    10. [10]

      [10] Zheng J M, Li J, Zhang Z R, et al. Solid State Ionics, 2008, 179:1794-1799

    11. [11]

      [11] ZHENG Jian-Ming(郑建明), YANG Yong(杨勇). Proceedings of The 14th National Conference on Solid State Ionics(第十 四届全国固态离子学学术会议), Xiamen:[s.n.], 2008:B38

    12. [12]

      [12] Wu Y, Murugan A V, Manthiram A. J. Electrochem., Soc., 2008,155(9):A635-A641

    13. [13]

      [13] Wang Q Y, Liu J, Murugan A V. J. Mater Chem., 2009,19: 4965-4972

    14. [14]

      [14] Kang S H, Thackeray M M. Electrochem. Commun., 2009, 11:748-751

    15. [15]

      [15] Lee S H, Koo B K, Kim J C, et al. J. Power Sources, 2008, 184:276-283

    16. [16]

      [16] Liu J, Wang Q, Reeja J B, et al. Electrochem. Commun., 2010,12:750-753

    17. [17]

      [17] WU Xiao-Biao(吴晓彪), DONG Zhi-Xin(董志鑫), ZHEN Jian-Ming(郑建明), et al. J. Xiamen Univ.: Nat. Sci.(Xiamen Daxue Xuebao: Ziran Kexueban), 2008,47(2):224-227

    18. [18]

      [18] Gao J, Manthiram A. J. Power Sources, 2009,191:644-647

    19. [19]

      [19] Gao J, Kim J, Manthiram A. Electrochem. Commun., 2009, 11:84-86

    20. [20]

      [20] Lee E S, Manthiram A. J. Electrochem. Soc., 2011,158(1): A47-A50

    21. [21]

      [21] Kang S H, Johnson C S, Vaughey J T, et al. J. Electrochem. Soc., 2006,153(6):A1186-A1192

    22. [22]

      [22] Kang S H, Thackeray M M. J. Electrochem. Soc., 2008,155 (4):A269-A275

    23. [23]

      [23] Denis Y W Y, Katsunori Y, Hiroshi N. J. Electrochem. Soc., 2010,157(11):A1177-A1182

    24. [24]

      [24] DU Ke(杜柯),HUANG Xia(黄霞),YANG Fei(杨菲), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(5): 983-988

    25. [25]

      [25] Gao Y, Yakovleva M V, Ebner W B. Electrochem. Solid-State Lett., 1998,1(3):117-119

    26. [26]

      [26] Lu C H, Wang H C. J. Electrochem. Soc., 2005,152(6):C341 -C347

    27. [27]

      [27] Breger J, Jiang M, Dupré N, et al. J. Solid State Chem., 2005,178:2575-2585

    28. [28]

      [28] Lu Z, Beaulieu L Y, Donaberger R A, et al. J. Electrochem. Soc., 2002,149(6):A778-A791

    29. [29]

      [29] Park Y J, Hong Y S, Wu X, et al. J. Power Sources, 2004, 129:288-295

    30. [30]

      [30] Thackeray M M, Johnson C S, Li N, et al. US Patent, 7303840 B2. 2007-12-4.

    31. [31]

      [31] Yu L, Qiu W, Lian F, et al. J. Alloys Compd., 2009,471:317 -321

  • 加载中
    1. [1]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    2. [2]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    3. [3]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    4. [4]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    5. [5]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    8. [8]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    11. [11]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(359)
  • Abstract views(1162)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return