Citation: LI Rui-Jie, HAI Jin-Ling, CUI Wen-Jing, LIANG Li-Juan, GAO Ling-Xiang. Preparation and Electric-field Response Behavior of Tetragonal Barium Titanate Crystal Druse[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 793-797. doi: 10.3969/j.issn.1001-4861.2013.00.138 shu

Preparation and Electric-field Response Behavior of Tetragonal Barium Titanate Crystal Druse

  • Received Date: 31 October 2012
    Available Online: 3 December 2012

    Fund Project: 国家自然科学基金(No.20941001) 资助项目。 (No.20941001)

  • In order to improve the barium titanate (BaTiO3) particles response to electric field in hydrous elastomers, a simple surfactant-free hydrothermal method was used to synthesize the new BaTiO3, only by regulating the reaction temperature and pH of the solution. The particle was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and contact angle (CA). The results show that the BaTiO3 crystal druse is in highly pure tetragonal phase and has a good hydrophilicity. The crystal druse possesses finer electric-field response performances when it is dispersed in the gelatin aqueous elastomers.
  • 加载中
    1. [1]

      [1] Liu Y D, Fang F F, Choi H J, et al. Colloids Surf., A, 2011, 381:17-22

    2. [2]

      [2] Chakraborti P, Karahan Toprakci H A, Yang P, et al. Sens. Actuators, A, 2012,179:151-157

    3. [3]

      [3] Hao L M, Shi Z H, Zhao X P. React. Funct. Polym., 2009, 69:165-169

    4. [4]

      [4] Tetsu M, Kousuke S, Kiyohito K. Polym. J., 2004,45:3811-3817

    5. [5]

      [5] Gao L X, Zhao X P. J. Appl. Polym. Sci., 2007,104:1738-1743

    6. [6]

      [6] Wei J H, Peng S L, Zhao L H, et al. Scripta Mater., 2006, 55:671-673

    7. [7]

      [7] Tang H, Zhao X P, Wang B X, et al. Smart Mater. Struct., 2006,15:86-92

    8. [8]

      [8] Merz W J. Phys. Rev., 1949,76(8):1221-1225

    9. [9]

      [9] Jung Y J, Lim D Y, Nho J S, et al. J. Cryst. Growth, 2005,274:638-652

    10. [10]

      [10] Xia F, Liu J W, Gu D, et al. Nanoscale, 2011,3:3860-3867

    11. [11]

      [11] Deng Z, Dai Y, Chen W, et al. Nanoscale Res. Lett., 2010,5 (7):1217-1221

    12. [12]

      [12] ZHAN Hong-Quan(展红全), JIANG Xiang-Ping(江向平), CHEN Chao(陈超), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27(10):1938-1944

    13. [13]

      [13] PU Yong-Ping(蒲永平), CHEN Shou-Tian(陈寿田). Mater. Rev.(Cailiao Daobao), 2003,17(11): 44-46

    14. [14]

      [14] Wang Y G, Xu G, Yang L L, et al. Mater. Lett., 2009,63: 239-241

    15. [15]

      [15] PU Yong-Ping(蒲永平), WU Jian-Peng(吴建鹏), CHEN Shou-Tian(陈寿田). Piezoelectr. Acoustoopt. (Yadian yu Shengguang), 2004,26(4):341-344

    16. [16]

      [16] Wada S, Suzuki T, Osada M, et al. Jpn. J. Appl. Phys., 1998,37:5385-5393

    17. [17]

      [17] Huang T C, Wang M T, Sheu H S, et al. J. Phys.: Condens. Matter, 2007,19:476212-476223

    18. [18]

      [18] Smith M B, Page K, Siegrist T, et al. J. Amer. Chem. Soc., 2008,130:6955-6963

    19. [19]

      [19] He Q Y, Tang X G, Zhang J X, et al. Nanostruct. Mater., 1999,11(2):287-293

    20. [20]

      [20] Eror N G, Loehr T M, Cornilsen B C. Ferroelectrics, 1980, 28:321-324

    21. [21]

      [21] Zhang J, Sun L D, Yin J L, et al. Chem. Mater., 2002,14 (10):4172-4177

    22. [22]

      [22] Luo H, Xu C, Zou D B, et al. Mater. Lett., 2008,62:3558-3560

    23. [23]

      [23] López C M, Choi K S. Langmuir, 2006,22(25):10625-10629

    24. [24]

      [24] Kuroda T, Irisawa T, Ookawa A. J. Cryst. Growth, 1977,42: 41-46

    25. [25]

      [25] Matsushita M, Sano M, Hayakawa M Y, et al. Phys. Rev. Lett., 1984,53(3):286-289

    26. [26]

      [26] Wang B X, Zhao Y, Zhao X P. Colloids Surf., A, 2007,295 (1):27-33

    27. [27]

      [27] Zhao Y, Zhai J, Tan S X, et al. Nanotechnology, 2006,17: 2090-2097

    28. [28]

      [28] Gao L X, Zhao X P. Int. J. Mod. Phys. B, 2005,19:1449-1455

    29. [29]

      [29] Klass D L, Martinek T W. J. Appl. Phys., 1967,38:67-75

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    5. [5]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    6. [6]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    7. [7]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    8. [8]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    9. [9]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    10. [10]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    11. [11]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    16. [16]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    17. [17]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    18. [18]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(222)
  • Abstract views(766)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return