Citation: LI Rui-Jie, HAI Jin-Ling, CUI Wen-Jing, LIANG Li-Juan, GAO Ling-Xiang. Preparation and Electric-field Response Behavior of Tetragonal Barium Titanate Crystal Druse[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 793-797. doi: 10.3969/j.issn.1001-4861.2013.00.138 shu

Preparation and Electric-field Response Behavior of Tetragonal Barium Titanate Crystal Druse

  • Received Date: 31 October 2012
    Available Online: 3 December 2012

    Fund Project: 国家自然科学基金(No.20941001) 资助项目。 (No.20941001)

  • In order to improve the barium titanate (BaTiO3) particles response to electric field in hydrous elastomers, a simple surfactant-free hydrothermal method was used to synthesize the new BaTiO3, only by regulating the reaction temperature and pH of the solution. The particle was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and contact angle (CA). The results show that the BaTiO3 crystal druse is in highly pure tetragonal phase and has a good hydrophilicity. The crystal druse possesses finer electric-field response performances when it is dispersed in the gelatin aqueous elastomers.
  • 加载中
    1. [1]

      [1] Liu Y D, Fang F F, Choi H J, et al. Colloids Surf., A, 2011, 381:17-22

    2. [2]

      [2] Chakraborti P, Karahan Toprakci H A, Yang P, et al. Sens. Actuators, A, 2012,179:151-157

    3. [3]

      [3] Hao L M, Shi Z H, Zhao X P. React. Funct. Polym., 2009, 69:165-169

    4. [4]

      [4] Tetsu M, Kousuke S, Kiyohito K. Polym. J., 2004,45:3811-3817

    5. [5]

      [5] Gao L X, Zhao X P. J. Appl. Polym. Sci., 2007,104:1738-1743

    6. [6]

      [6] Wei J H, Peng S L, Zhao L H, et al. Scripta Mater., 2006, 55:671-673

    7. [7]

      [7] Tang H, Zhao X P, Wang B X, et al. Smart Mater. Struct., 2006,15:86-92

    8. [8]

      [8] Merz W J. Phys. Rev., 1949,76(8):1221-1225

    9. [9]

      [9] Jung Y J, Lim D Y, Nho J S, et al. J. Cryst. Growth, 2005,274:638-652

    10. [10]

      [10] Xia F, Liu J W, Gu D, et al. Nanoscale, 2011,3:3860-3867

    11. [11]

      [11] Deng Z, Dai Y, Chen W, et al. Nanoscale Res. Lett., 2010,5 (7):1217-1221

    12. [12]

      [12] ZHAN Hong-Quan(展红全), JIANG Xiang-Ping(江向平), CHEN Chao(陈超), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27(10):1938-1944

    13. [13]

      [13] PU Yong-Ping(蒲永平), CHEN Shou-Tian(陈寿田). Mater. Rev.(Cailiao Daobao), 2003,17(11): 44-46

    14. [14]

      [14] Wang Y G, Xu G, Yang L L, et al. Mater. Lett., 2009,63: 239-241

    15. [15]

      [15] PU Yong-Ping(蒲永平), WU Jian-Peng(吴建鹏), CHEN Shou-Tian(陈寿田). Piezoelectr. Acoustoopt. (Yadian yu Shengguang), 2004,26(4):341-344

    16. [16]

      [16] Wada S, Suzuki T, Osada M, et al. Jpn. J. Appl. Phys., 1998,37:5385-5393

    17. [17]

      [17] Huang T C, Wang M T, Sheu H S, et al. J. Phys.: Condens. Matter, 2007,19:476212-476223

    18. [18]

      [18] Smith M B, Page K, Siegrist T, et al. J. Amer. Chem. Soc., 2008,130:6955-6963

    19. [19]

      [19] He Q Y, Tang X G, Zhang J X, et al. Nanostruct. Mater., 1999,11(2):287-293

    20. [20]

      [20] Eror N G, Loehr T M, Cornilsen B C. Ferroelectrics, 1980, 28:321-324

    21. [21]

      [21] Zhang J, Sun L D, Yin J L, et al. Chem. Mater., 2002,14 (10):4172-4177

    22. [22]

      [22] Luo H, Xu C, Zou D B, et al. Mater. Lett., 2008,62:3558-3560

    23. [23]

      [23] López C M, Choi K S. Langmuir, 2006,22(25):10625-10629

    24. [24]

      [24] Kuroda T, Irisawa T, Ookawa A. J. Cryst. Growth, 1977,42: 41-46

    25. [25]

      [25] Matsushita M, Sano M, Hayakawa M Y, et al. Phys. Rev. Lett., 1984,53(3):286-289

    26. [26]

      [26] Wang B X, Zhao Y, Zhao X P. Colloids Surf., A, 2007,295 (1):27-33

    27. [27]

      [27] Zhao Y, Zhai J, Tan S X, et al. Nanotechnology, 2006,17: 2090-2097

    28. [28]

      [28] Gao L X, Zhao X P. Int. J. Mod. Phys. B, 2005,19:1449-1455

    29. [29]

      [29] Klass D L, Martinek T W. J. Appl. Phys., 1967,38:67-75

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    6. [6]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(222)
  • Abstract views(547)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return