Citation:
GAO Shan-Min, LIU Xin, XU Hui, LIU Xun-Yong, HUANG Bai-Biao, DAI Ying. SiO2/TiO2-xCx/C: Preparation, Characterization, Adsorption and Visible-Light Photocatalytic Properties[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(3): 557-564.
doi:
10.3969/j.issn.1001-4861.2013.00.120
-
We report an architecturally controlled synthesis of porous SiO2/TiO2-xCx/C composites with high adsorption capability and efficient visible-light photocatalytic activity. The porous composites are composed of silica particles as the cores and tetrabutyl titanate as the precursor for the TiO2 shell. Ethylene glycol, glycerol, glucose and polyvinyl alcohol were used as the binding agent between the core and the precursory shell, the carbon source and the porosity promoter, respectively. The structure, crystallinity, morphology, and other physical-chemical properties of the samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microcopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fourier transform-infrared spectroscopy (FTIR), N2 adsorption-desorption isotherms measurements and UVVis diffuse reflectance spectroscopy (DRS). The formation mechanism of the porous composites was discussed. Methylene blue solution(MB) was used as model wastewater to evaluate the adsorption and photocatalytic activity of the samples under visible light. The as-synthesized porous composites exhibit both much higher adsorption capability and better photocatalytic activity for the photooxidation of MB than that of the pure silica-titania composite. The adsorption rate reaches 70% within 30 min when polyvinyl alcohol is used as the carbon source, and the sample using glycerol as the carbon source has the best visible- light photocatalytic activity and the degradation rate of MB can be 95% within 40 min.
-
-
-
[1]
[1] Zhang J, Xu Q, Can L, et al. Angew. Chem. Int. Ed., 2008,47(9):1766-1769
-
[2]
[2] Xu P, Xu T, Lu J, et al. Energ. Environ. Sci., 2010,3(8): 1128-1134
-
[3]
[3] Zhang X, Liu F, Wang Z S, et al. J. Phys. Chem. C, 2011, 115(25):12665-12671
-
[4]
[4] Chen Y C, Pu Y C, Hsu Y J. J. Phys. Chem. C, 2012,116(4): 2967-2975
-
[5]
[5] Tachikawa T, Fujitsuka M, Majima T. J. Phys. Chem. C, 2007, 111(14):5259-5275
-
[6]
[6] Natoli A, Cabeza A, Santacruz I, et al. J. Am. Ceram. Soc., 2012,95(2):502-508
-
[7]
[7] CHEN Wei(陈伟), WEI Xiao(魏霄), WANG Jian-Qiang (王建强), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(10):2059-2064
-
[8]
[8] LI You-Ji(李佑稷), CHEN Wei(陈伟), LI Lei-Yong(李雷勇). Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(7): 1751-1756
-
[9]
[9] Kamegawa T, Yamahana D, Yamashita H. J. Phys. Chem. C, 2010,114(35):15049-15053
-
[10]
[10] YANG Han-Pei(杨汉培), SHI Ze-Min(石泽敏), DAI Kai-Jing(戴开静), et al. Acta Chim. Sinica(Huaxue Xuebao), 2011,69(5):536-542
-
[11]
[11] PU Yu-Ying(蒲玉英), FANG Jian-Zhang(方建章), PENG Feng(彭峰), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(6):1045-1050
-
[12]
[12] XU Shu-Zhi(徐淑芝), DONG Xiang-Ting(董相廷), GAI Guang-Qing(盖广清), et al. Acta Chim. Sinica(Huaxue Xuebao), 2012,70(15):1660-1666
-
[13]
[13] Zhang J Z, Grabstanowicz L R, Gao S M, et al. Catal. Sci. Technol., 2012,2(2):390-399
-
[14]
[14] ZHAO Jing-Xian(赵静贤), LI Qiao-Ling(李巧玲), ZHANG Cun-Rui(张存瑞), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(5):875-879
-
[15]
[15] Ren W J, Ai Z H, Jia F L, et al. Appl. Catal. B: Environ., 2007,69(3/4):138-144
-
[16]
[16] Ren S X, Zhao X, Guo Y P, et al. J. Solid State Chem., 2009,182(2):312-316
-
[17]
[17] Zhang Y H, Xiao P, Cao G Z, et al. J. Mater. Chem., 2009, 19(7):948-953
-
[18]
[18] Takahashi K, Yui H. J. Phys. Chem. C, 2009,113(47): 20322-20327
-
[19]
[19] Sevilla M, Fuertes A B. Chem. Eur. J., 2009,15(16):4195-4203
-
[20]
[20] SUN Yong(孙镛), BI Yan-Ying(毕研迎), SHI Feng(石凤). Acta Chim. Sinica(Huaxue Xuebao), 2007,65(1):67-71
-
[21]
[21] Dutoit D C W, Schmeider M, Baiker A. J. Catal., 1995,153 (1):165-176
-
[22]
[22] Song C Y, Yu W J, Dong L, et al. Catal. Commun., 2009,10 (5):650-654
-
[23]
[23] Yu J G, Yu J C, Chen B, et al. J. Solid State Chem., 2003, 174(2):372-380
-
[24]
[24] XU Qian-Qian(许倩倩), YANG Chun(杨春). Acta Chim. Sinica(Huaxue Xuebao), 2012,70(4):392-398
-
[25]
[25] Wu Z B, Dong F, Zhao W R, et al. Nanotechnology, 2009, 20(23):235701
-
[26]
[26] QIU Wei(仇伟), REN Cheng-Jun(任成军), GONG Mao-Chu (龚茂初), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(6):487-1492
-
[1]
-
-
-
[1]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[2]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
-
[3]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[4]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[5]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007
-
[6]
Ruolin CHENG , Yue WANG , Xiyao NIU , Huagen LIANG , Ling LIU , Shijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424
-
[7]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[8]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[11]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[12]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[13]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[14]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[15]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[16]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[17]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[18]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[19]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[20]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[1]
Metrics
- PDF Downloads(357)
- Abstract views(932)
- HTML views(82)