Citation: GAO Shan-Min, LIU Xin, XU Hui, LIU Xun-Yong, HUANG Bai-Biao, DAI Ying. SiO2/TiO2-xCx/C: Preparation, Characterization, Adsorption and Visible-Light Photocatalytic Properties[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 557-564. doi: 10.3969/j.issn.1001-4861.2013.00.120 shu

SiO2/TiO2-xCx/C: Preparation, Characterization, Adsorption and Visible-Light Photocatalytic Properties

  • Received Date: 8 November 2012
    Available Online: 26 December 2012

    Fund Project: 国家重点基础研究发展计划(No.2007CB613302) (No.2007CB613302) 国家自然科学基金(No.21104030) (No.21104030) 山东省高等学校科技计划(No.J12LA01, J11LB03)资 助项目。 (No.J12LA01, J11LB03)

  • We report an architecturally controlled synthesis of porous SiO2/TiO2-xCx/C composites with high adsorption capability and efficient visible-light photocatalytic activity. The porous composites are composed of silica particles as the cores and tetrabutyl titanate as the precursor for the TiO2 shell. Ethylene glycol, glycerol, glucose and polyvinyl alcohol were used as the binding agent between the core and the precursory shell, the carbon source and the porosity promoter, respectively. The structure, crystallinity, morphology, and other physical-chemical properties of the samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microcopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fourier transform-infrared spectroscopy (FTIR), N2 adsorption-desorption isotherms measurements and UVVis diffuse reflectance spectroscopy (DRS). The formation mechanism of the porous composites was discussed. Methylene blue solution(MB) was used as model wastewater to evaluate the adsorption and photocatalytic activity of the samples under visible light. The as-synthesized porous composites exhibit both much higher adsorption capability and better photocatalytic activity for the photooxidation of MB than that of the pure silica-titania composite. The adsorption rate reaches 70% within 30 min when polyvinyl alcohol is used as the carbon source, and the sample using glycerol as the carbon source has the best visible- light photocatalytic activity and the degradation rate of MB can be 95% within 40 min.
  • 加载中
    1. [1]

      [1] Zhang J, Xu Q, Can L, et al. Angew. Chem. Int. Ed., 2008,47(9):1766-1769

    2. [2]

      [2] Xu P, Xu T, Lu J, et al. Energ. Environ. Sci., 2010,3(8): 1128-1134

    3. [3]

      [3] Zhang X, Liu F, Wang Z S, et al. J. Phys. Chem. C, 2011, 115(25):12665-12671

    4. [4]

      [4] Chen Y C, Pu Y C, Hsu Y J. J. Phys. Chem. C, 2012,116(4): 2967-2975

    5. [5]

      [5] Tachikawa T, Fujitsuka M, Majima T. J. Phys. Chem. C, 2007, 111(14):5259-5275

    6. [6]

      [6] Natoli A, Cabeza A, Santacruz I, et al. J. Am. Ceram. Soc., 2012,95(2):502-508

    7. [7]

      [7] CHEN Wei(陈伟), WEI Xiao(魏霄), WANG Jian-Qiang (王建强), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(10):2059-2064

    8. [8]

      [8] LI You-Ji(李佑稷), CHEN Wei(陈伟), LI Lei-Yong(李雷勇). Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(7): 1751-1756

    9. [9]

      [9] Kamegawa T, Yamahana D, Yamashita H. J. Phys. Chem. C, 2010,114(35):15049-15053

    10. [10]

      [10] YANG Han-Pei(杨汉培), SHI Ze-Min(石泽敏), DAI Kai-Jing(戴开静), et al. Acta Chim. Sinica(Huaxue Xuebao), 2011,69(5):536-542

    11. [11]

      [11] PU Yu-Ying(蒲玉英), FANG Jian-Zhang(方建章), PENG Feng(彭峰), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(6):1045-1050

    12. [12]

      [12] XU Shu-Zhi(徐淑芝), DONG Xiang-Ting(董相廷), GAI Guang-Qing(盖广清), et al. Acta Chim. Sinica(Huaxue Xuebao), 2012,70(15):1660-1666

    13. [13]

      [13] Zhang J Z, Grabstanowicz L R, Gao S M, et al. Catal. Sci. Technol., 2012,2(2):390-399

    14. [14]

      [14] ZHAO Jing-Xian(赵静贤), LI Qiao-Ling(李巧玲), ZHANG Cun-Rui(张存瑞), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(5):875-879

    15. [15]

      [15] Ren W J, Ai Z H, Jia F L, et al. Appl. Catal. B: Environ., 2007,69(3/4):138-144

    16. [16]

      [16] Ren S X, Zhao X, Guo Y P, et al. J. Solid State Chem., 2009,182(2):312-316

    17. [17]

      [17] Zhang Y H, Xiao P, Cao G Z, et al. J. Mater. Chem., 2009, 19(7):948-953

    18. [18]

      [18] Takahashi K, Yui H. J. Phys. Chem. C, 2009,113(47): 20322-20327

    19. [19]

      [19] Sevilla M, Fuertes A B. Chem. Eur. J., 2009,15(16):4195-4203

    20. [20]

      [20] SUN Yong(孙镛), BI Yan-Ying(毕研迎), SHI Feng(石凤). Acta Chim. Sinica(Huaxue Xuebao), 2007,65(1):67-71

    21. [21]

      [21] Dutoit D C W, Schmeider M, Baiker A. J. Catal., 1995,153 (1):165-176

    22. [22]

      [22] Song C Y, Yu W J, Dong L, et al. Catal. Commun., 2009,10 (5):650-654

    23. [23]

      [23] Yu J G, Yu J C, Chen B, et al. J. Solid State Chem., 2003, 174(2):372-380

    24. [24]

      [24] XU Qian-Qian(许倩倩), YANG Chun(杨春). Acta Chim. Sinica(Huaxue Xuebao), 2012,70(4):392-398

    25. [25]

      [25] Wu Z B, Dong F, Zhao W R, et al. Nanotechnology, 2009, 20(23):235701

    26. [26]

      [26] QIU Wei(仇伟), REN Cheng-Jun(任成军), GONG Mao-Chu (龚茂初), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(6):487-1492

  • 加载中
    1. [1]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    2. [2]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    15. [15]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    17. [17]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    18. [18]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    20. [20]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(357)
  • Abstract views(932)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return