Citation:
QIU Li-Gan, WANG Mao-Yuan, SUN Yu-Feng. Ionic Conduction in Ba0.9La0.1Ce0.9Nd0.1O3-α Ceramic[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(4): 838-844.
doi:
10.3969/j.issn.1001-4861.2013.00.117
-
Proton-conducting Ba0.9La0.1Ce0.9Nd0.1O3-α ceramic was prepared by high temperature solid-state reaction. X-ray powder diffraction pattern (XRD) shows that the material is of a single orthorhombic phase of perovskite-type BaCeO3. Ionic conduction in the material under different gas atmospheres was studied by using gas concentration cell and ac impendence spectroscopy methods in the temperature range of 500~900℃, respectively, and compared with that of Ba0.9Ca0.1Ce0.9Nd0.1O3-α. The results indicate that Ba0.9La0.1Ce0.9Nd0.1O3-α is a pure protonic conductor with the protonic transport number of 1 in wet hydrogen in the range 500~900℃. In dry air, Ba0.9La0.1Ce0.9Nd0.1O3-α is a mixed conductor of oxide ion and electronic hole. The oxide ionic transport numbers are 0.295~0.081. The oxide ionic conductivity of the material is higher than that of Ba0.9Ca0.1Ce0.9Nd0.1O3-α. In wet air, Ba0.9La0.1Ce0.9Nd0.1O3-α is a mixed conductor of proton, oxide ion and electronic hole. The protonic transport numbers are 0.151~0.009, and the oxide ionic transport numbers are 0.300~0.107. The protonic conductivity of the material is lower than that of Ba0.9Ca0.1Ce0.9Nd0.1O3-α. In hydrogen-air fuel cell, Ba0.9La0.1Ce0.9Nd0.1O3-α is a mixed conductor of proton, oxide ion and electron. The ionic transport numbers are 0.964~0.853. The ionic conductivity of the material is close to that of Ba0.9Ca0.1Ce0.9Nd0.1O3-α.
-
-
-
[1]
[1] Iwahara H. Solid State Ionics, 1996,86-88:9-15
-
[2]
[2] Peng R R, Wu Y, Yang L Z, et al. Solid State Ionics, 2006, 177:389-393
-
[3]
[3] Cai M Y, Liu S, Efimov K, et al. J. Membr. Sci., 2009,343: 90-96
-
[4]
[4] Lee D W, Won J H, Shim K B. Mater. Lett., 2003,57:3346-3351
-
[5]
[5] Wu J, Davies R A, Islam M S, et al. Chem. Mater., 2005,17: 846-851
-
[6]
[6] Kreuer K D, Schnherr E, Maier J. Solid State Ionics, 1994, 70/71:278-284
-
[7]
[7] Ma G L, Shimura T, Iwahara H. Solid State Ionics, 1998, 110:103-110
-
[8]
[8] LIU Rui-Quan(刘瑞泉), SU Xin-Tai(宿新泰), WANG Ji-De (王吉德), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2004,20(1):57-60
-
[9]
[9] Iwahara H, Shimura T, Matsumoto H. Electrochemistry, 2000,68(3):154-160
-
[10]
[10] Yajima T, Iwahara H. Solid State Ionics, 1991,47:117-124
-
[11]
[11] Ma G L, Shimura T, Iwahara H. Solid State Ionics, 1999, 120:51-60
-
[12]
[12] Qiu L G, Ma G L, Wen D J. Solid State Ionics, 2004,166: 69-75
-
[13]
[13] Iwahara H, Uchida H, Ono K, et al. J. Electrochem. Soc., 1988,135:529-533
-
[14]
[14] Wang M Y, Qiu L G, Zhang T. Chin. J. Chem., 2010,28(2): 1121-1125
-
[15]
[15] Bonanos N. Solid State Ionics, 1992,53-56:967-974
-
[16]
[16] MA Gui-Lin(马桂林), QIU Li-Gan(仇立干), CHEN Rong(陈 蓉). Acta Chim. Sin.(Huaxue Xuebao), 2002,60(12):2135-2140
-
[1]
-
-
-
[1]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[2]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[3]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[4]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[5]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[6]
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
-
[7]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[10]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[11]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[12]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[13]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[14]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[15]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[16]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[17]
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
-
[18]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[19]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[20]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(449)
- HTML views(44)