Citation: ZHOU Ya-Chong, ZHANG Sheng-Hui, OU Xue-Mei, ZHANG Xiao-Bin, ZHANG Xin. Thermal Decomposition Behavior and Deintercalation Kinetics of Kaolinite/ Benzamide Intercalation Complex[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 985-990. doi: 10.3969/j.issn.1001-4861.2013.00.112 shu

Thermal Decomposition Behavior and Deintercalation Kinetics of Kaolinite/ Benzamide Intercalation Complex

  • Corresponding author: OU Xue-Mei, 
  • Received Date: 31 October 2012
    Available Online: 29 November 2012

    Fund Project: 中国矿业大学中央高校基本科研业务费专项资金(2012LWA02) 资助项目。 (2012LWA02)

  • The kaolinite/benzamide was prepared with a direct displacement intercalation method by using kaolinite/DMSO intercalation complex as an intermediate. The XRD and FTIR results show that benzamide has inserted into kaolinite and formed new hydrogen bonds with the inner surface of kaolinite. The thermal decomposition behavior of the complex was studied by TG and DSC. The TG and DSC results indicate that the decomposition process of the complex proceeds in two steps. The first step is deintercalation of the intercalated benzamide at 231 ℃ and the second step is dehydroxylation of kaolinite. For the first step, the kinetic triplet of the complex was calculated by the Modified Iterative Iso-conversional Procedure,Malek and Dollimore methods. The activation energy Ea is 75.4 kJ·mol-1, the range of pre-exponential factor A is 4.9×1010~8.8×1010 s-1. The optimized mechanism function is nth-order chemical reaction,the mechanism function is G(α)=[1-(1-α)1-n]/(1-n), f(α)=(1-α)n.
  • 加载中
    1. [1]

      [1] Matsumura A, Komori Y. Bull. Chem. Soc. Japan, 2001,74 (6):1153-1157

    2. [2]

      [2] WANG Lin-Jiang(王林江), WU Da-Qing(吴大清). Mater. Rev.(Cailiao Daobao), 2001,15(6):41-43

    3. [3]

      [3] Chen Z H, Huang C Y, Gong K C. Appl. PolySci. 2000,75 (6):796-801

    4. [4]

      [4] WANG Lin-Jiang(王林江), XIE Xiang-Li(谢襄漓), CHEN Nan-Chun(陈南春), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(5): 853-859

    5. [5]

      [5] CHEN Jie-YU(陈洁渝), AN Chun-Jie(严春杰), WAN Wei- Min(万为敏), et al. J. Chin. Cer. Soc.(Guisuanyan Xuebao), 2010,38(9):1837-1842

    6. [6]

      [6] WANG Lin-Jiang(王林江), WU Da-Qing(吴大清), YUAN Peng(袁鹏), et al. Chem. J. Chinese Universities.(Gaodeng Xuexiao Huaxue Xuebao), 2002,23(10):1945-1951

    7. [7]

      [7] CHEN Jie-Yu(陈洁渝), YAN Chun-Jie(严春杰). Acta Petrologica et Mineralogica(Yanshi Kuangwuxue Zazhi), 2003,22(1):99-102

    8. [8]

      [8] Cheng H F, Yang J, Frost R L, et al. J. Therm. Anal. Calorim., 2011,103:507-513

    9. [9]

      [9] QIN Fang-Fang(秦芳芳), HE Ming-Zhong(何明中), CUI Jing- Wei(崔景伟), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2007,28(12):2343-2348

    10. [10]

      [10] Xu Jian-Feng(徐剑锋), LIANG Yi-Ying(梁怡瑛), MA Ning (马宁), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(6):1121-1127

    11. [11]

      [11] ZHANG Sheng-Hui(张生辉), QIANG Ying-Huai(强颖怀), OU Xue-Mei(欧雪梅), et al. Spectroscopy and Spectral Analysis(Guangpuxue Yu Guangpu Fenxi), 2009,29(8):2067 -2070

    12. [12]

      [12] GardoIinski J E, Ramos L P, Wypych F. J. Colloid Interface Sci., 2000,221:284-287

    13. [13]

      [13] ZHANG Sheng-Hui(张生辉),YANG Wei(杨薇),XIA Hua (夏华). J. Chin. Cer. Soc.(Guisuanyan Xuebao), 2004,132:631

    14. [14]

      [14] HU Rong-Zu(胡荣祖), SHI Qi-Zhen(史启祯). Kinetics of Thermalanalysis (热分析动力学). Beijing: Science Press, 2001:149-167,241-243

    15. [15]

      [15] Sadtler Research Laboratories. Sadtler Standard Spectra. SRL: Philadelphia USA, 1980:9-10

    16. [16]

      [16] Malek J, Smrcka V. Thermochim. Acta, 1996,186(1):153 -169

    17. [17]

      [17] Malek J. Thermochim. Acta, 1992,200(1):257-267

    18. [18]

      [18] Malek J, Criado J M. Thermochim. Acta, 1994,236(1):187 -197

    19. [19]

      [19] Dollimore D, Tong P, Alexander K S. Thermochim. Acta, 1996,1:282-283

    20. [20]

      [20] CAO Xiu-Hua(曹秀华), WANG Lian-Shi(王炼石), ZHOU Yi-Yu(周奕雨). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,19(11):1237-1240

    21. [21]

      [21] ZHOU Jia(周佳), HE Ming-Zhong(何明中), ZHANG Ai Hua (张爱华), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(7):1279-1283

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    4. [4]

      Mahmoud Sayed Han Li Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-. doi: 10.1016/j.actphy.2025.100117

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(444)
  • Abstract views(637)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return