Citation: LI Peng, DING Xin-Geng, YANG Hui, SU Wei, DOU Tian-Jun. Effect of Mass Fraction of CeO2 on Leaching Behavior of Aluminoborosilicate Glass[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 709-714. doi: 10.3969/j.issn.1001-4861.2013.00.110 shu

Effect of Mass Fraction of CeO2 on Leaching Behavior of Aluminoborosilicate Glass

  • Received Date: 20 October 2012
    Available Online: 5 December 2012

    Fund Project: 浙江省重点科技创新团队资金(No.2009R50010)资助项目。 (No.2009R50010)

  • Phase change in aluminoborosilicate glass and effect on leaching behavior were studied with different mass fraction of CeO2 via characterization methods of XRD, XPS, SEM and ICP-MS. The results showed that: In glass network structure the molar ratio of quadrivalence Ce and trivalent Ce was 9.25:1. And when mass fraction of CeO2 met or exceeded 7%, the cerianite began to be precipitated in glass. With mass fraction of CeO2 increasing, rCe of glass decreased at first and then increased in 1 day, and showed trend to decrease in 28 day. However, in the same mass fraction of CeO2, rCe gradually decreased with the prolongation of leaching time. And rCe of the glass sample bE stabilized lower than 4×10-6 g·m-2·d-1 after 7 day with 9wt% CeO2. The leaching behavior was excellent. Hence, controlling CeO2 precipitated within a certain range could be superior to completely dissolving one in glass on leaching behavior.
  • 加载中
    1. [1]

      [1] PENG Lin(彭琳), ZHAO Gao-Ling(赵高凌), YING Hao(应 浩), et al. J. Chin. Ceram. Soc.(Guisuanyan Xuebao), 2007, 35(7):856-865

    2. [2]

      [2] SONG Guo-Hua(宋国华), MIAO Jian-Wen(缪建文), WANG Miao(王淼), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(11):1975-1980

    3. [3]

      [3] LU Xiao-Jun(陆晓军), XIAO Zhi-Yi(肖志义), ZHANG Xi-Yan(张希艳), et al. Chin. J. Lumines.(Faguang Xuebao), 2005,26(6):819-822

    4. [4]

      [4] FU Zhen-Xiao(付振晓), ZHANG Qi-Tu(张其土), XU Zhong-Zi(许仲梓). J. Chin. Rare Earth Soc.(Zhongguo Xitu Xuebao), 2003,21(2):196-199

    5. [5]

      [5] Lutze W, Ewing R C. Radioactive Wasteforms for the Future. North-Holland: Amsterdam, 1988:4

    6. [6]

      [6] Ojovan M I, Lee W E. An Introduction to Nuclear Waste Immobilisation. Amsterdam: Elsevier, 1995:215

    7. [7]

      [7] Bingham P A, Hand R J, Stennett M C, et al. Mater. Res. Soc. Symp. Proc. Sci., 2008,1107:421-428

    8. [8]

      [8] Li H, Hrma P, Vienna J D, et al. J. Non-Cryst. Solids, 2003, 331:202-216

    9. [9]

      [9] ZU Cheng-Kui(祖成奎), WANG Yan-Hang(王衍行), CHEN Jiang(陈江), et al. Bull. Chin. Ceram. Soc.(Guisuanyan Tongbao), 2004(4): 29-43

    10. [10]

      [10] Frugier P, Chave T, Gin S, et al. J. Nucl. Mater., 2009,392: 552-567

    11. [11]

      [11] Advocat T, Jollivet P, Crovisier J L, et al. J. Nucl. Mater., 2001,298:55-62

    12. [12]

      [12] Munier I, Crovisier J L, Grambow B, et al. J. Nucl. Mater., 2004,324:97-115

    13. [13]

      [13] LIANG Xiao-Feng(梁晓峰), LAI Yuan-Ming(赖元明), YING Guang-Fu(尹光福), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(1):35-39

    14. [14]

      [14] LAI Yuan-Min(赖元明), LIANG Xiao-Feng(梁晓峰), QIAN Bin(钱斌), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(4):721-726

    15. [15]

      [15] LIAO Qi-Long(廖其龙), WANG Fu(王辅), PAN She-Qi(潘社奇), et al. J. Nucl. Radiochem.(He Huaxue Yu Fangshe Huaxue), 2010,32(6):336-341

    16. [16]

      [16] Yang G, Stuart C, Russell J, et al. J. Eur. Ceram. Soc., 2010,30:831-838

    17. [17]

      [17] ASTM c 1285-02. United States: ASTM International, 2002: 1-22

    18. [18]

      [18] Rygel J L, Chen Y S, Pantano C G, et al. J. Am. Ceram. Soc., 2011,94:2442-2451

    19. [19]

      [19] Yang H M, Tao Q F. J. Am. Ceram. Soc., 2010,93:1056-1061

    20. [20]

      [20] Cailleteau C, Angeli F, Devreux F, et al. Nature Mater., 2008,7:978-983

    21. [21]

      [21] Ojovan M I, Pankov A, Lee W E, et al. J. Nucl. Mater., 2006,358:57-68

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    5. [5]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    6. [6]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    7. [7]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    8. [8]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    9. [9]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    10. [10]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    11. [11]

      Naiying Fan Chuanli Qin Guo Zhang Bin Wang Yan Wang Bing Zheng Yichun Qu Zhiyao Sun Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061

    12. [12]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(189)
  • Abstract views(592)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return