Citation:
HAN Lei, CUI Xiao, LIU Xin-Mei. Particle Size Control for SAPO-11 Molecular Sieves[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(3): 565-570.
doi:
10.3969/j.issn.1001-4861.2013.00.103
-
In the presence of hexadecyl trimethyl ammonium bromide (CTAB) or fluoride ions (HF), superfine SAPO-11 was obtained via steam-assisted conversion method. The samples were characterized by SEM, XRD, IR, MAS NMR, TPD, TEM, TG-DSC and Nitrogen adsorption-desorption. The introduction of CTAB or HF can not only decrease the particle size, but also control the framework, morphology, pore structure and acid properties of SAPO-11 zeolites. The surfactant (CTAB) promotes the incorporation of Si atoms into the framework and leads to the increase of acid sites. The rod-like SAPO-11 monocrystal with 500 nm can be obtained in the presence of HF. F- ions could contribute to the higher thermal stability of the sample, while they inhibit Si atoms to incorporate into the framework of the zeolite, which causes a significant decrease of acid sites.
-
-
-
[1]
[1] Sugmoto M, Katsuno H, Takasu K, et al. Zeolites, 1987,7(6): 503-507
-
[2]
[2] Jindrich H, Hansidaar S, Nienhuis J Q, et al. J. Catal., 1999, 176(1):83-89
-
[3]
[3] Lok B, Messina C A, Patton R L, et al. US Patent, 444087 [P], 1984-1-13.
-
[4]
[4] Mériaudeau P, Tuan V A, Nghiem V T, et al. J. Catal., 1997,169(1):55-66
-
[5]
[5] ZHANG Sheng-Zheng(张胜振), CHEN Sheng-Li(陈胜利), DONG Peng(董鹏), et al. Chinese J. Catal.(Cuihua Xuebao), 2007,28(10):857-864
-
[6]
[6] Bandyopadhyay M, Bandyopadhyay R, Kubota Y, et al. Chem. Lett., 2000,29(9):1024-1025
-
[7]
[7] Xu W, Dong J, Li J. Chem. Soc., Chem. Commun., 1990,10: 755-756
-
[8]
[8] Yuichiro H, Kenji M. Mater. Chem. Phys., 2010,123(2-3): 507-509
-
[9]
[9] Song C M, Feng Y, Ma L L. Microporous Mesoporous Mater., 2012,147(1):205-211
-
[10]
[10] XU Ru-Ren(徐如人), PANG Wen-Qin(庞文琴), YU Ji-Hong (于吉红), et al. Chemistry-Zeolites and Porous Materials(分 子筛与多孔材料化学). Beijing: Science Press, 2004:5-237
-
[11]
[11] XIN Qin(辛勤), LUO Meng-Fei(罗孟飞). The Modern Catalytic Research Methods(现代催化研究方法). Beijing: Science Press, 2009:9-31
-
[12]
[12] Blasco T, Chica A, Corma A. J. Catal., 2006,242(1):153-161
-
[13]
[13] Bandyopadhyay R, Bandyopadhyay M, Kubota Y, et al. J. Porous Mater., 2002,9(2):83-95
-
[14]
[14] Chen B H, Chen Y N. J. Phys. Chem. C, 2007,111(42): 15236-15243
-
[15]
[15] Ren X T, Li N, Cao J Q, et al. Appl. Catal. A, 2006,298(2): 144-151
-
[16]
[16] Mériaudeau P, Tuan V A, Lefebvre F, et al. Microporous Mesoporous Mater., 1998,22(1-3):435-449
-
[17]
[17] LIU Zhong-Min(刘中民), HUANG Xing-Yun(黄兴云), HE Chang-Qing(何长青), et al. Chinese J. Catal.(Cuihua Xuebao), 1996,17(6):540-543
-
[1]
-
-
-
[1]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[2]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[3]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[4]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[5]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[6]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[7]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[8]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[9]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[10]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
-
[11]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[12]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[13]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[14]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[15]
Wenjun Yang , Qiaoling Tan , Wenjiao Xie , Xiaoyu Pan , Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150
-
[16]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[17]
. . University Chemistry, 2024, 39(11): 0-0.
-
[18]
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
-
[19]
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
-
[20]
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(211)
- HTML views(16)