Citation: GONG Ya-Qiong, ZHANG He-Nan, ZHAN Huan, WEI Zeng-Yan, SU Wei. Biotemplating Fabrication of CdS Embedded Bionanowires at Room Temperature[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 635-641. doi: 10.3969/j.issn.1001-4861.2013.00.094 shu

Biotemplating Fabrication of CdS Embedded Bionanowires at Room Temperature

  • Received Date: 9 June 2012
    Available Online: 24 September 2012

    Fund Project: 山西省青年科技研究基金(No.20120210005-2)资助项目。 (No.20120210005-2)

  • Cadmium Sulfide (CdS) nanowires (NWs) were synthesized by templating bionanotubes self-assembled from bis(N-amido-glycylglycine)-1,7-heptane dicarboxylate using cadmium chloride (CdCl2) and sodium sulfide (Na2S) as Cd and S precursors. The-COOH groups from the bionanotube surface act as chelating agents to coordinate Cd2+ ions and facilitate further growth of CdS nanocrystals on the bionanotube. The morphology, structure and composition of CdS embedded bionanowires were characterized by Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM), Selected Area Electron Diffraction (SAED), UV, steady state Photoluminescence (PL) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results show that the resulting CdS embedded bionanowires, (4±0.6) μm in length and (400±55) nm in diameter, are coated by CdS nanoparticles with diameter of (5.5±0.3) nm. This work presents an effective direct-growth strategy on biomolecular templates to synthesize monodispersed QD-coated nanowires at room temperature by using coordination between -COOH and Cd2+, which has not accomplished previously by any other non-biotemplating synthetic methods.
  • 加载中
    1. [1]

      [1] Niemeyer C M, Angew. Chem. Int. Ed. Eng., 2003,42(47): 5796-5800

    2. [2]

      [2] Zhao H Y, Douglas E P, Harrison B S, et al. Langmuir, 2001, 17(26):8428-8433

    3. [3]

      [3] Henglein A. Chem. Rev., 1989,89(8):1861-1873

    4. [4]

      [4] Mondal S P, Das K, Dhar A, et al. Nanotechnology, 2007, 18(9):095606, DOI:10.1088/0957-4484/18/9/095606

    5. [5]

      [5] Wu X C, Tao Y R. J. Cryst. Growth, 2002,242(3/4):309-312

    6. [6]

      [6] Zhou Y, Kogiso M, He C, et al. Adv. Mater., 2007,19(8): 1055-1058

    7. [7]

      [7] Jang J S, Joshi U A, Lee J S. J. Phys. Chem. C, 2007,111 (35):13280-13287

    8. [8]

      [8] Yang L, Xing R, Shen Q, et al. J. Phys. Chem. B, 2006,110 (21):10534-10539

    9. [9]

      [9] Ge C, Xu M, Fang J, et al. J. Phys. Chem. C, 2008,112(29), 10602-10608

    10. [10]

      [10] Mao C, Flynn C E, Hayhurst A, et al. PNAS, 2003,100(12): 6946-6951

    11. [11]

      [11] Su H, Han J, Dong Q, et al. Nanotechnology, 2008(19): 025601(6pp), DOI:10.1088/0957-4484/19/02/025601

    12. [12]

      [12] Duan X, Huang Y, Cui Y, et al. Nature, 2001,409:66-69

    13. [13]

      [13] Wang X, Summers C J, Wang Z. Nano Lett., 2004,4(3):423-426

    14. [14]

      [14] Matsui H, Gologan B. J. Phys. Chem. B, 2000,104(15):3383-3386

    15. [15]

      [15] Douberly G J, Pan S, Walters D, et al. J. Phys. Chem. B, 2001,105:7612-7618

    16. [16]

      [16] Matsui H, MacCuspie R. Nano Lett., 2001,1(12):671-675

    17. [17]

      [17] Djalali R, Chen Y F, Matsui H. J. Am. Chem. Soc., 2002, 124(46):13660-13661

    18. [18]

      [18] Kogiso M, Ohnishi S, Yase K, et al. Langmuir, 1998,14(18): 4978-4986

    19. [19]

      [19] Spanhel L, Haase M, Weller H, et al. J. Am. Chem. Soc., 1987,109(19):5649-5655

    20. [20]

      [20] Gao T, Wang T. J. Phys. Chem. B, 2004,108(52):20045-20049

  • 加载中
    1. [1]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    7. [7]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    8. [8]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    9. [9]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    10. [10]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

Metrics
  • PDF Downloads(0)
  • Abstract views(386)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return