Citation: LIU Yi-Ming, XIA Zhi-Yue, OUANG Jian-Ming, JIA Li-Ping, ZHANG Guang-Na, DING Yi-Ming. Comparative Study of Growth and Aggregation Process of Urinary Crystallites in Urines of Stone Patients and Healthy Controls[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 903-909. doi: 10.3969/j.issn.1001-4861.2013.00.093 shu

Comparative Study of Growth and Aggregation Process of Urinary Crystallites in Urines of Stone Patients and Healthy Controls

  • Corresponding author: OUANG Jian-Ming, 
  • Received Date: 7 August 2012
    Available Online: 8 November 2012

    Fund Project: 国家自然科学基金(NO.81170649) (NO.81170649)湖南省自然科学基金(No.S2012J5042) (No.S2012J5042)湖南省教育厅科研项目(No.12C0702)资助项目。 (No.12C0702)

  • The differences in growth kinetics of urinary crystallites from 5 patients with renal stones and 5 healthy subjects were compared by using scanning electron microscopy (SEM) and X-ray diffractometer (XRD). With the increase of crystal growth time (t), the size of urinary crystallites from patients with renal stones increased constantly from (6±4) μm at t=1 h to (29±17) μm at t=48 h, but the density of crystallites decreased gradually from (1 400±300) mm-2 at t=1 h to (450±140) mm-2 at t=48 h. It indicated that the formation process of crystallites in lithogenic urine was dominated by growth control. In contrast, for healthy subjects, the density of urinary crystallites dereased from (850±260) mm-2 at t=1 h to (610±210) mm-2 at t=48 h, and the crystal size was increased only from 6±5 μm at t=1 h to (15±9) μm at t=48 h. It indicated that the growth process of crystallites in healthy urine was growth control and nucleation-control simultaneously. The differences mentioned above are mainly attributed to that both the concentration and activity of the inhibitors in healthy urine were higher than those in lithogenic urine, and thus can inhibit the growth and aggregation of urinary crystallites more effectively.
  • 加载中
    1. [1]

      [1] Yu S L, Gan X G, Huang J M, et al. J. Urol., 2011,186(3): 1114-1120

    2. [2]

      [2] Yao X Q, Ouyang J M, Peng H, et al. Carbohydr. Polym., 2012,90(7):392-398

    3. [3]

      [3] Chaiyarit S, Thongboonkerd V. J. Proteome Res., 2012,11(6): 3269-3280

    4. [4]

      [4] Zhang S, Su Z X, Yao X Q, et al. Mater. Sci. Eng. C-Mater. Biol. Appl., 2012,32:840-847

    5. [5]

      [5] LI Jun-Jun(李君君), HOU Shan-Hua(侯善华), XIA Zhi-Yue (夏志月), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):245-250

    6. [6]

      [6] Daudon M, Hennequin C, Boujelben G, et al. Kidney Int., 2005,67:1934-1943

    7. [7]

      [7] Peng H, Ouyang J M, Yao X Q, et al. Int. J. Nanomed., 2012,7(8):4727-4737

    8. [8]

      [8] Daudon M, Jungers P. Nephron. Physiol., 2004,98:31-36

    9. [9]

      [9] Robertson W G, Peacock M, Marshall R W, et al. New England J. Med., 1976,294(5):249-252

    10. [10]

      [10] Poon N W, Gohel M D I. Carbohydr. Res., 2012,347:64-68

    11. [11]

      [11] Lauren A, Thurgood·Phulwinder K., Ryall R L. Urol Res., 2008,36:103-110

    12. [12]

      [12] BAI Yu(白钰), OYYANG Jian-Ming(欧阳健明), BAI Yan (白燕), et al. Spectrosc. Spectr. Anal.(Guangpuxue Yu Guangpu Fenxi), 2004,24(8):1016-1019

    13. [13]

      [13] CHEN Jun-Hao, GU Guang-Yu, WANG Yi-Li. J. Clin. Lab. Sci.(Linchuang Jianyan Zazhi), 1999,5(17):266-267

    14. [14]

      [14] Poon N, Gohel M D I. Carbohydr. Res., 2012,347(1):64-68

    15. [15]

      [15] Daudon M, Cohen-Solal F, Barbey F, et al. Urol. Res., 2003,31:207-211

    16. [16]

      [16] Abdel-Halim R E. J. Urol. Nephrol., 1993,27:145-149

    17. [17]

      [17] Tiselius H G, Hallin A, Lindback B. Urol. Res., 2001,29(2): 75-82

    18. [18]

      [18] Mullin J W. Crystallization. London: Butterworth Heinemann, 2000:102-288

    19. [19]

      [19] Wang G, Liu T, Xie X L, et al. Mater. Chem. Phys., 2011,3 (128):336-340

    20. [20]

      [20] Schwille P O, Schmiedl A, Fan J, et al. Urol. Res., 1999,27: 117-126

    21. [21]

      [21] Lee T, Lin Y C. Cryst. Growth Des., 2011,11(7):2973-2992

    22. [22]

      [22] Chien Y C, Masica D L, Gray J J, et al. J. Biol. Chem., 2009,284(35):23491-23501

    23. [23]

      [23] Langdon A, Wignall G R, Rogers K, et al. Calcd. Tiss. Int., 2009,84(3):240-248

    24. [24]

      [24] Jung T S, Sheng X X, Choi C K, et al. Langmuir, 2004,20: 8587-8596

    25. [25]

      [25] Michelacci Y M, Glashan R Q, Schor N. Kidney Int., 1989, 36:1022-1028

    26. [26]

      [26] Wesson J A, Ganne V, Beshensky A M, et al. Urol. Res., 2005,33(3):206-212

    27. [27]

      [27] Mustafi D, Nakagawa Y, Makinen M W. Cell Mol. Biol., 2000,46(8):1345-1360

    28. [28]

      [28] Buchholz N P, Kim D S, Grover P K. J. Bone Miner. Res., 1999,14(6):1003-1012

    29. [29]

      [29] Mechlin C, KalorinC, Asplin J, et al. J. Endourol., 2011,25 (9):1541-1545

    30. [30]

      [30] Lieske J C, Leonard R, Toback F G. Am. J. Physiol., 1995,4 (268):604-612

    31. [31]

      [31] Mandel N. J. Am. Soc. Nephrol., 1994,5(5):S37-45

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    4. [4]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    17. [17]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(403)
  • Abstract views(532)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return