Citation: LIU Yi-Ming, XIA Zhi-Yue, OUANG Jian-Ming, JIA Li-Ping, ZHANG Guang-Na, DING Yi-Ming. Comparative Study of Growth and Aggregation Process of Urinary Crystallites in Urines of Stone Patients and Healthy Controls[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 903-909. doi: 10.3969/j.issn.1001-4861.2013.00.093
-
The differences in growth kinetics of urinary crystallites from 5 patients with renal stones and 5 healthy subjects were compared by using scanning electron microscopy (SEM) and X-ray diffractometer (XRD). With the increase of crystal growth time (t), the size of urinary crystallites from patients with renal stones increased constantly from (6±4) μm at t=1 h to (29±17) μm at t=48 h, but the density of crystallites decreased gradually from (1 400±300) mm-2 at t=1 h to (450±140) mm-2 at t=48 h. It indicated that the formation process of crystallites in lithogenic urine was dominated by growth control. In contrast, for healthy subjects, the density of urinary crystallites dereased from (850±260) mm-2 at t=1 h to (610±210) mm-2 at t=48 h, and the crystal size was increased only from 6±5 μm at t=1 h to (15±9) μm at t=48 h. It indicated that the growth process of crystallites in healthy urine was growth control and nucleation-control simultaneously. The differences mentioned above are mainly attributed to that both the concentration and activity of the inhibitors in healthy urine were higher than those in lithogenic urine, and thus can inhibit the growth and aggregation of urinary crystallites more effectively.
-
-
[1]
[1] Yu S L, Gan X G, Huang J M, et al. J. Urol., 2011,186(3): 1114-1120
-
[2]
[2] Yao X Q, Ouyang J M, Peng H, et al. Carbohydr. Polym., 2012,90(7):392-398
-
[3]
[3] Chaiyarit S, Thongboonkerd V. J. Proteome Res., 2012,11(6): 3269-3280
-
[4]
[4] Zhang S, Su Z X, Yao X Q, et al. Mater. Sci. Eng. C-Mater. Biol. Appl., 2012,32:840-847
-
[5]
[5] LI Jun-Jun(李君君), HOU Shan-Hua(侯善华), XIA Zhi-Yue (夏志月), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):245-250
-
[6]
[6] Daudon M, Hennequin C, Boujelben G, et al. Kidney Int., 2005,67:1934-1943
-
[7]
[7] Peng H, Ouyang J M, Yao X Q, et al. Int. J. Nanomed., 2012,7(8):4727-4737
-
[8]
[8] Daudon M, Jungers P. Nephron. Physiol., 2004,98:31-36
-
[9]
[9] Robertson W G, Peacock M, Marshall R W, et al. New England J. Med., 1976,294(5):249-252
-
[10]
[10] Poon N W, Gohel M D I. Carbohydr. Res., 2012,347:64-68
-
[11]
[11] Lauren A, Thurgood·Phulwinder K., Ryall R L. Urol Res., 2008,36:103-110
-
[12]
[12] BAI Yu(白钰), OYYANG Jian-Ming(欧阳健明), BAI Yan (白燕), et al. Spectrosc. Spectr. Anal.(Guangpuxue Yu Guangpu Fenxi), 2004,24(8):1016-1019
-
[13]
[13] CHEN Jun-Hao, GU Guang-Yu, WANG Yi-Li. J. Clin. Lab. Sci.(Linchuang Jianyan Zazhi), 1999,5(17):266-267
-
[14]
[14] Poon N, Gohel M D I. Carbohydr. Res., 2012,347(1):64-68
-
[15]
[15] Daudon M, Cohen-Solal F, Barbey F, et al. Urol. Res., 2003,31:207-211
-
[16]
[16] Abdel-Halim R E. J. Urol. Nephrol., 1993,27:145-149
-
[17]
[17] Tiselius H G, Hallin A, Lindback B. Urol. Res., 2001,29(2): 75-82
-
[18]
[18] Mullin J W. Crystallization. London: Butterworth Heinemann, 2000:102-288
-
[19]
[19] Wang G, Liu T, Xie X L, et al. Mater. Chem. Phys., 2011,3 (128):336-340
-
[20]
[20] Schwille P O, Schmiedl A, Fan J, et al. Urol. Res., 1999,27: 117-126
-
[21]
[21] Lee T, Lin Y C. Cryst. Growth Des., 2011,11(7):2973-2992
-
[22]
[22] Chien Y C, Masica D L, Gray J J, et al. J. Biol. Chem., 2009,284(35):23491-23501
-
[23]
[23] Langdon A, Wignall G R, Rogers K, et al. Calcd. Tiss. Int., 2009,84(3):240-248
-
[24]
[24] Jung T S, Sheng X X, Choi C K, et al. Langmuir, 2004,20: 8587-8596
-
[25]
[25] Michelacci Y M, Glashan R Q, Schor N. Kidney Int., 1989, 36:1022-1028
-
[26]
[26] Wesson J A, Ganne V, Beshensky A M, et al. Urol. Res., 2005,33(3):206-212
-
[27]
[27] Mustafi D, Nakagawa Y, Makinen M W. Cell Mol. Biol., 2000,46(8):1345-1360
-
[28]
[28] Buchholz N P, Kim D S, Grover P K. J. Bone Miner. Res., 1999,14(6):1003-1012
-
[29]
[29] Mechlin C, KalorinC, Asplin J, et al. J. Endourol., 2011,25 (9):1541-1545
-
[30]
[30] Lieske J C, Leonard R, Toback F G. Am. J. Physiol., 1995,4 (268):604-612
-
[31]
[31] Mandel N. J. Am. Soc. Nephrol., 1994,5(5):S37-45
-
[1]
-
-
[1]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[2]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[3]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[5]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[6]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[7]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[8]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[9]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[10]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[11]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[12]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[13]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[14]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[15]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[16]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[17]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[18]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[19]
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
-
[20]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[1]
Metrics
- PDF Downloads(403)
- Abstract views(462)
- HTML views(28)