Citation: WANG Xia, HU Hui, BAI Yan. Enhancement of Upconversion Luminescence in TeO2:Tm3+/Er3+/Yb3+ Nanoparticles by Li+ Doping[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 659-664. doi: 10.3969/j.issn.1001-4861.2013.00.072 shu

Enhancement of Upconversion Luminescence in TeO2:Tm3+/Er3+/Yb3+ Nanoparticles by Li+ Doping

  • Received Date: 26 July 2012
    Available Online: 8 September 2012

    Fund Project: 国家自然科学基金(No.21075053)资助项目。 (No.21075053)

  • α-TeO2:Tm3+/Er3+/Yb3+ and β-TeO2:Tm3+/Er3+/Yb3+ nanoparticles with Li+ doping had been prepared via a hydrothermal method. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy and upconversion luminescence spectra. The results indicated that the doping of Li+ ions does not change the crystal form and structure of the as-prepared nanoparticles basically. The as-prepared nanoparticles showed the blue emission (476 nm), green emissions (525 nm, 545 nm) and red emissions (659 nm, 667 nm) under 980 nm near-infrared light excitation, respectively, corresponding to energy level transition of 1G43H6 of Tm3+ ions, 2H11/24I15/2 and 4S3/24I15/2 of Er3+ ions, 4F9/24I15/2 of Er3+ ions and 3F23H6 of Tm3+ ions. The results also indicated that doping of Li+ ions can increase the luminous intensity of the white light system, and it does not change the white color of the nanoparticles basically. In addition, the upconversion luminescence mechanism of the nanoparticles was analyzed.
  • 加载中
    1. [1]

      [1] Yang D L, Gong H, Pun E Y B, et al. Opt. Express, 2010,18 (18):18997-19008

    2. [2]

      [2] Xing L L, Wang R, Xu W, et al. J. Lumin., 2012,132(6): 1568-1574

    3. [3]

      [3] ZHANG Jun-Wen(张俊文), TAN Ning-Hui(谭宁会), LIU Ying-Liang(刘应亮), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(2):229-232

    4. [4]

      [4] ZOU Shao-Yu(邹少瑜), MENG Jian-Xin(孟建新). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(6):1138-1142

    5. [5]

      [5] Lue W C, Ma X H, Zhou H, et al. J. Phys Chem. C, 2008, 112(38):15071-15074

    6. [6]

      [6] Patra A, Friend C S, Kapoor R, et al. Appl. Phys. Lett., 2003, 83(2):284-286

    7. [7]

      [7] Xu S Q, Ma H P, Fang D W, et al. Mater. Lett., 2005,59(24-25):3066-3068

    8. [8]

      [8] Yang J, Zhang C M, Peng C. Chem. Eur. J., 2009,15(18): 4649-4655

    9. [9]

      [9] Cao T C, Yang Y, Gao Y. Biomaterials, 2009,15(18):2959-2968

    10. [10]

      [10] Mader H S, Kele P, Saleh S M. Curr. Opin. Chem. Boil., 2009,14(5):582-596

    11. [11]

      [11] Deng D G, Xu S Q, Zhao S L, et al. J. Lumin., 2009,129 (11):1266-1270

    12. [12]

      [12] Chen D Q, Wang Y S, Zheng K L, et al. Appl. Phys. Lett., 2007,91(25):251903

    13. [13]

      [13] Santana-Alonso A, Méndez-Ramos J, Yanes A C, et al. Mater. Chem. and Phys., 2010,124(1):699-703

    14. [14]

      [14] Mahalingam V, Naccache R, Vetrone F, et al. Opt. Express, 2012,20(1):111-119

    15. [15]

      [15] Hu H, Bai Y. J. Alloys Compd., 2012,527:25-29

    16. [16]

      [16] CAO Bao-Sheng(曹保胜), FENG Zhi-Qing(冯志庆), HE Yang-Yang(何洋洋), et al. Acta Optica. Sinica(Guangxue Xuebao), 2010,30(7):1861-1865

    17. [17]

      [17] CAO Bao-Sheng(曹保胜), HE Yang-Yang(何洋洋), FENG Zhi-Qing(冯志庆), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(4):776-780

    18. [18]

      [18] Liu L, Wang Y X, Zhang X R, et al. Opt. Commun., 2011, 284(7):1876-1879

    19. [19]

      [19] Sun Q, Zhao H, Chen X Q, et al. Mater. Chem. Phys., 2010, 123(2-3):806-810

    20. [20]

      [20] Cheng Q, Sui J H, Cai W et al. Nanoscale, 2012,4(3):779-784

    21. [21]

      [21] Bai Y F, Wang Y X, Peng G Y, et al. Opt. Commun., 2009, 282(9):1922-1924

    22. [22]

      [22] Liang H J, Chen G Y, Liu H C, et al. J. Lumin., 2009,129 (3):197-202

    23. [23]

      [23] Mahalingam V, Naccache R, Vetrone F, et al. Opt. Express, 2012,20(1):111-119

    24. [24]

      [24] Chen G Y, Liu H C, Liang H J, et al. J. Phys. Chem. C, 2008,112(31):12030-12036

    25. [25]

      [25] Chen X Q, Liu Z K, Sun Q, Mao Ye, et al. Opt. Commun., 2011,284(7):2046-2049

    26. [26]

      [26] Jia Yu T, Song Y T, Bai Y F, et al. Lumin., 2011,26(4):259-263

    27. [27]

      [27] Bai Y F, Wang Y X, Yang K, et al. J. Phys. Chem. C, 2008, 112(32):12259-12263

    28. [28]

      [28] Qin B Y, Bai Y, Zhou Y H, et al. Mater. Lett., 2009,63(22): 1949-1951

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    3. [3]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    4. [4]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    5. [5]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    8. [8]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    16. [16]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    17. [17]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    20. [20]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

Metrics
  • PDF Downloads(409)
  • Abstract views(1144)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return