Citation: WANG Xia, HU Hui, BAI Yan. Enhancement of Upconversion Luminescence in TeO2:Tm3+/Er3+/Yb3+ Nanoparticles by Li+ Doping[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 659-664. doi: 10.3969/j.issn.1001-4861.2013.00.072 shu

Enhancement of Upconversion Luminescence in TeO2:Tm3+/Er3+/Yb3+ Nanoparticles by Li+ Doping

  • Received Date: 26 July 2012
    Available Online: 8 September 2012

    Fund Project: 国家自然科学基金(No.21075053)资助项目。 (No.21075053)

  • α-TeO2:Tm3+/Er3+/Yb3+ and β-TeO2:Tm3+/Er3+/Yb3+ nanoparticles with Li+ doping had been prepared via a hydrothermal method. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy and upconversion luminescence spectra. The results indicated that the doping of Li+ ions does not change the crystal form and structure of the as-prepared nanoparticles basically. The as-prepared nanoparticles showed the blue emission (476 nm), green emissions (525 nm, 545 nm) and red emissions (659 nm, 667 nm) under 980 nm near-infrared light excitation, respectively, corresponding to energy level transition of 1G43H6 of Tm3+ ions, 2H11/24I15/2 and 4S3/24I15/2 of Er3+ ions, 4F9/24I15/2 of Er3+ ions and 3F23H6 of Tm3+ ions. The results also indicated that doping of Li+ ions can increase the luminous intensity of the white light system, and it does not change the white color of the nanoparticles basically. In addition, the upconversion luminescence mechanism of the nanoparticles was analyzed.
  • 加载中
    1. [1]

      [1] Yang D L, Gong H, Pun E Y B, et al. Opt. Express, 2010,18 (18):18997-19008

    2. [2]

      [2] Xing L L, Wang R, Xu W, et al. J. Lumin., 2012,132(6): 1568-1574

    3. [3]

      [3] ZHANG Jun-Wen(张俊文), TAN Ning-Hui(谭宁会), LIU Ying-Liang(刘应亮), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(2):229-232

    4. [4]

      [4] ZOU Shao-Yu(邹少瑜), MENG Jian-Xin(孟建新). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(6):1138-1142

    5. [5]

      [5] Lue W C, Ma X H, Zhou H, et al. J. Phys Chem. C, 2008, 112(38):15071-15074

    6. [6]

      [6] Patra A, Friend C S, Kapoor R, et al. Appl. Phys. Lett., 2003, 83(2):284-286

    7. [7]

      [7] Xu S Q, Ma H P, Fang D W, et al. Mater. Lett., 2005,59(24-25):3066-3068

    8. [8]

      [8] Yang J, Zhang C M, Peng C. Chem. Eur. J., 2009,15(18): 4649-4655

    9. [9]

      [9] Cao T C, Yang Y, Gao Y. Biomaterials, 2009,15(18):2959-2968

    10. [10]

      [10] Mader H S, Kele P, Saleh S M. Curr. Opin. Chem. Boil., 2009,14(5):582-596

    11. [11]

      [11] Deng D G, Xu S Q, Zhao S L, et al. J. Lumin., 2009,129 (11):1266-1270

    12. [12]

      [12] Chen D Q, Wang Y S, Zheng K L, et al. Appl. Phys. Lett., 2007,91(25):251903

    13. [13]

      [13] Santana-Alonso A, Méndez-Ramos J, Yanes A C, et al. Mater. Chem. and Phys., 2010,124(1):699-703

    14. [14]

      [14] Mahalingam V, Naccache R, Vetrone F, et al. Opt. Express, 2012,20(1):111-119

    15. [15]

      [15] Hu H, Bai Y. J. Alloys Compd., 2012,527:25-29

    16. [16]

      [16] CAO Bao-Sheng(曹保胜), FENG Zhi-Qing(冯志庆), HE Yang-Yang(何洋洋), et al. Acta Optica. Sinica(Guangxue Xuebao), 2010,30(7):1861-1865

    17. [17]

      [17] CAO Bao-Sheng(曹保胜), HE Yang-Yang(何洋洋), FENG Zhi-Qing(冯志庆), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(4):776-780

    18. [18]

      [18] Liu L, Wang Y X, Zhang X R, et al. Opt. Commun., 2011, 284(7):1876-1879

    19. [19]

      [19] Sun Q, Zhao H, Chen X Q, et al. Mater. Chem. Phys., 2010, 123(2-3):806-810

    20. [20]

      [20] Cheng Q, Sui J H, Cai W et al. Nanoscale, 2012,4(3):779-784

    21. [21]

      [21] Bai Y F, Wang Y X, Peng G Y, et al. Opt. Commun., 2009, 282(9):1922-1924

    22. [22]

      [22] Liang H J, Chen G Y, Liu H C, et al. J. Lumin., 2009,129 (3):197-202

    23. [23]

      [23] Mahalingam V, Naccache R, Vetrone F, et al. Opt. Express, 2012,20(1):111-119

    24. [24]

      [24] Chen G Y, Liu H C, Liang H J, et al. J. Phys. Chem. C, 2008,112(31):12030-12036

    25. [25]

      [25] Chen X Q, Liu Z K, Sun Q, Mao Ye, et al. Opt. Commun., 2011,284(7):2046-2049

    26. [26]

      [26] Jia Yu T, Song Y T, Bai Y F, et al. Lumin., 2011,26(4):259-263

    27. [27]

      [27] Bai Y F, Wang Y X, Yang K, et al. J. Phys. Chem. C, 2008, 112(32):12259-12263

    28. [28]

      [28] Qin B Y, Bai Y, Zhou Y H, et al. Mater. Lett., 2009,63(22): 1949-1951

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    3. [3]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    16. [16]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(409)
  • Abstract views(1044)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return