Citation: TANG Yan, FANG Wei-Mao, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Synthesis and Electrochemical Performance of Nano-Structure Li3V2(PO4)3/C by Sol-Spray Drying Method[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 915-921. doi: 10.3969/j.issn.1001-4861.2013.00.070 shu

Synthesis and Electrochemical Performance of Nano-Structure Li3V2(PO4)3/C by Sol-Spray Drying Method

  • Corresponding author: GUO Xiao-Dong, 
  • Received Date: 9 August 2012
    Available Online: 6 October 2012

    Fund Project: 国家科技支撑计划(No.2007BAQ01055) (No.2007BAQ01055)四川大学青年基金(No.2011SCU11081)资助项目。 (No.2011SCU11081)

  • Li3V2(PO4)3/C samples were successfully synthesized by sol-spray drying method, with LiOH·H2O, NH4VO3, H3PO4 and critic acid as raw materials, comparing the effect of mechamicalactivation before calcinations and direct calcination on the structure, morphology and electrochemical properties of the samples. The structure and morphology were characterized by XRD, SEM, BET and tap density test, and the electrochemical performance was studied by galvanostatic charge-discharge test, CV and EIS. The results show the samples are hollow spherical shell shape, which is composed of nano-sheet about 100nm and still keep the structure after mechamicalactivation. However, the crystallinity and tap density have improved a lot, so is the electrochemical performance. The discharge capacity is 123.6 mAh·g-1 at 0.1C, maintaining 107.8 and 106.0 mAh·g-1 even at high discharge rate of 10C and 20C. The EIS results indicate the samples prepared by the method have a smaller charge transfer resistance.
  • 加载中
    1. [1]

      [1] ZHAO Hao-Chuan(赵浩川), SONG Yang(宋杨), GUO Xiao- Dong(郭孝东), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(10):2347-2352

    2. [2]

      [2] TANG Hong(唐红), GUO Xiao-Dong(郭孝东), TANG Yan(唐 艳), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(4):809-814

    3. [3]

      [3] WU Yu-Ling(武玉玲), PU Wei-Hua(蒲薇华), REN Jian-Guo (任建国), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2012, 27(4):422-426

    4. [4]

      [4] TAGN Yan(唐艳), ZHONG Ben-He(钟本和), GUO Xiao- Dong(郭孝东), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(4):869-874

    5. [5]

      [5] Zhang B, Zheng J C. Electrochim. Acta, 2012,67(0):55-61

    6. [6]

      [6] Ko Y N, Koo H Y, Kim J H, et al. J. Power Sources, 2011, 196(16):6682-6687

    7. [7]

      [7] Nagamine K, Honma T, Komatsu T. J. Power Sources, 2011, 196(22):9618-9624

    8. [8]

      [8] ZHAI Jing(翟静), ZHAO Min-Shou(赵敏寿), SHA Ou(沙鸥), et al. Rare Metal Mater. Eng.(Xiyou Jinshu Cailiao Yu Gongcheng), 2010,39(7):1310-1316

    9. [9]

      [9] Rui X H, Li C, Chen C H. Electrochim. Acta, 2009,54(12): 3374-3380

    10. [10]

      [10] Qiao Y Q, Tu J P, Mai Y J, et al. J. Alloys Compd., 2011, 509(25):7181-7185

    11. [11]

      [11] Bini M, Ferrari S, Capsoni D, et al. Electrochim. Acta, 2011,56(6):2648-2655

    12. [12]

      [12] Xia Y, Zhang W K, Huang H, et al. Materials Science and Engineering B, 2011,176(8):633-639

    13. [13]

      [13] Pan A Q, Liu J, Zhang J G, et al. Electrochem. Commun., 2010,12(12):1674-1677

    14. [14]

      [14] Liu H W, Cheng C X, Huang X T, et al. Electrochim. Acta, 2010,55(28):8461-8465

    15. [15]

      [15] Wang L J, Zhou X C, Guo Y L. J. Power Sources, 2010,195 (9):2844-2850

    16. [16]

      [16] Fu P, Zhao Y M, Dong Y Z, et al. J. Phys. Chem. Solid, 2010,71(3):394-399

    17. [17]

      [17] CHEN Quan-Qi(陈权启), HE Wei-Chun(何伟春), WANG Jian-Ming(王建明), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2008,24(2):181-190

    18. [18]

      [18] Wang L J, Tang Z Y, Ma L, et al. Electrochem. Commun., 2011,13(11):1233-1235

    19. [19]

      [19] YU Feng(于锋), ZHANG Jing-Jie(张敬杰), YANG Yan-Feng (杨岩峰), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2009, 24(2):349-352

    20. [20]

      [20] MA Ping-Ping(马平平), LIU Zhi-Jian(刘志坚), XIA Jian- Hua(夏建华), et al. Chin. J. Rare Metals(Xiyou Jinshu), 2012,36(1):104-108

    21. [21]

      [21] Yin S C, Grondey H, Strobel P, et al. J. Am. Chem. Soc., 2003,125:10402-10411

    22. [22]

      [22] Ai D J, Liu K Y, Lu Z G, et al. J. Electrochim. Acta, 2011, 56(7):2823-2827

    23. [23]

      [23] Qiao Y Q, Tu J P, Wang X L, et al. J. Power Sources, 2011, 196(18):7715-7720

    24. [24]

      [24] Qiao Y Q, Wang X L, Xiang J Y, et al. Electrochim. Acta, 2011,56(5):2269-2275

    25. [25]

      [25] Tang A P, Wang X Y, Xu G R, et al. Mater. Lett., 2009,63 (27):2396-2398

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    15. [15]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(403)
  • Abstract views(419)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return