Citation: QIU Guang-Chao, XIA Bing-Bo, SUN Hong-Dan, FANG Guo-Qing, LIU Wei-Wei, LI De-Cheng, WEI Jie. Improvement of Electrochemical Properties of LiMn2O4 Cathode Material by LiMnPO4 Coating via Hydrothermal Method[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 437-443. doi: 10.3969/j.issn.1001-4861.2013.00.063 shu

Improvement of Electrochemical Properties of LiMn2O4 Cathode Material by LiMnPO4 Coating via Hydrothermal Method

  • Received Date: 23 July 2012
    Available Online: 12 October 2012

    Fund Project:

  • LiMnPO4 coated LiMn2O4 with different contents were prepared via hydrothermal method, and their structural and electrochemical properties were characterized by XRD, Raman, SEM, TEM and charge-discharge test. Generally, the modification of LiMnPO4 on the surface of the LiMn2O4 could not only increase the reversible capacity, but also upgrade its cyclic performances when cells were operated at 55 ℃. In the case of the 1wt% LiMnPO4 coated LiMn2O4, its reversible capacity is about 109 mAh·g-1 when cell was operated at 55 ℃, which is about 96% of its initial capacity. Moreover, 1wt% LiMnPO4 coated LiMn2O4 exhibits an improved rate capability compared with that of the bare LiMn2O4.
  • 加载中
    1. [1]

      [1] CONG Chang-Jie(从长杰), ZHANG Xiang-Jun(张向军), LU Shi-Gang(卢世刚), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(7):1319-1323

    2. [2]

      [2] ZHANG Meng-Xiong(张孟雄), ZHANG You-Xiang(张友祥). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28 (10):2065-2070

    3. [3]

      [3] Cheng F Y, Wang H B, Zhu Z Q, et al. Energy Environ. Sci., 2011,4:3668-3675

    4. [4]

      [4] WANG Wen-Hui(王文辉), CHEN Zhen-Yu(陈振宇), DAI Chang-Song(戴长松), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(5):1070-1074

    5. [5]

      [5] LI Xiao-Wei(李晓炜), LIN Ying-Bin(林应斌), LIN Ying(林 莹), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(4):643-648

    6. [6]

      [6] Arumugam D, Kalaignan G P. Thin Solid Films., 2011,520: 338-343

    7. [7]

      [7] Li Y M, Lin Z Z, Li Y L, et al. Mater. Res. Bull., 2011,46: 2450-2455

    8. [8]

      [8] Izumi T, Norifumi F, Muxina K. Powder Technology, 2008, 181:228-236

    9. [9]

      [9] LIU Dong-Qiang(刘东强), YU Ji(吁霁), SUN Yu-Heng(孙玉 恒), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(1):41-45

    10. [10]

      [10] LIU Yun-Jian(刘云健), GUO Hua-Jun(郭华军), LI Xin-Hai (李新海), et al. Rare Metals.(Xiyou Jinshu), 2011,30(2):120-125

    11. [11]

      [11] Li X F, Xu Y L. Electrochemistry Communications, 2007,9: 2023-2026

    12. [12]

      [12] Liu J X, Wang H E, Zhou G L, et al. J. Power Sources, 2012,198:51-257

    13. [13]

      [13] Gao Y, Dahn J R. J. Electrochem. Soc., 1996,143(1):100-114

    14. [14]

      [14] Zhao S L, Chen H Y, Wen J B, et al. J. Alloys Compd., 2009,474:473-476

    15. [15]

      [15] Sergio B, Valentina G, Priscilla R, et al. J. Power Sources, 2011,196:9792-9799

    16. [16]

      [16] Li G H, Ikuta H, Uchida T, et al. J. Electrochem. Soc., 1996,143(1):178-182

    17. [17]

      [17] Lee J F, Yin W T, Raman S, et al. J. Power Sources, 2003, 119-121:721-726

    18. [18]

      [18] Siva R K, Devarajan M, Subramani S, et al. Ionics, 2010, 16:351-360

    19. [19]

      [19] ZHANG Qiu-Ming(张秋明), QIAO Yu-Qing(乔玉卿), ZHAO Min-Shou(赵敏寿), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(1):67-73

    20. [20]

      [20] WANG Chao(王超), LIU Xing-Quan(刘兴泉), LIU Hong-Ji (刘宏基), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(9):1835-1842

    21. [21]

      [21] Li X W, Yang R, Cheng B, et al. Mater. Lett., 2012,66:168-171

    22. [22]

      [22] Liu D Q, He Z Z, Liu X Q. Mater. Lett., 2007,6:4703-4706

    23. [23]

      [23] Qing C B, Bai Y, Yang J M, et al. Electroch. Acta, 2011,56: 6612-6618

    24. [24]

      [24] Ha H W, Nan J Y, Keon K H. Electroch. Acta, 2007,52: 3236-3241

    25. [25]

      [25] Arumugam D, Kalaignan G P. Mater. Res. Bull., 2010,45: 1825-1831

    26. [26]

      [26] Sahan H L, Hüseyin G, Saban P, et al. Solid State Ionics, 2008,178:1837-1842

    27. [27]

      [27] Yang Z X, Yang W S, Evans D G, et al. J. Power Sources, 2009,189:1147-1153

    28. [28]

      [28] Hung F Y, Lui T S, Liao H C. Appl. Surface Sci., 2007,253: 7443-7448

    29. [29]

      [29] CAO Ji-Na(曹继娜), CAO Gao-Shao(曹高劭), YU Hong-Ming(于洪民), et al. Rare Metals(Xiyou Jinshu), 2011,30(1): 39-43

    30. [30]

      [30] Liu B, Zhang Q, He S C, et al. Electroch. Acta, 2011,56: 6748-6751

    31. [31]

      [31] Wang Y R, Yang Y F, Yang Y B, et al. Solid State Commun., 2010,150:81-85

    32. [32]

      [32] Li Y M, Lin Z Z, Li Y L, et al. Mater. Res. Bull., 2011,46: 2450-2455

    33. [33]

      [33] Julien C, Camacho-Lopez M A. Solid State Ionics, 2000, 135:241-248

    34. [34]

      [34] Dokko K, Anzue N. Electrochem. Commun., 2004,6:384-388

    35. [35]

      [35] Masashi K, Yuta M. Phosph. Rese Bull., 2010,24:12-15

    36. [36]

      [36] Zhou W J, He B L, Li H L. Mater. Res. Bull., 2008,43:2285-2294

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    14. [14]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

Metrics
  • PDF Downloads(465)
  • Abstract views(643)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return