Citation: XU Zhen, LI Juan, LI Xinjun. Effect of NixCo3-xO4 Modification for CdSe/TiO2 Nanotube Arrays on Activity of Photoelectrochemical Oxidation of Water[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 429-436. doi: 10.3969/j.issn.1001-4861.2013.00.051 shu

Effect of NixCo3-xO4 Modification for CdSe/TiO2 Nanotube Arrays on Activity of Photoelectrochemical Oxidation of Water

  • Received Date: 21 June 2012
    Available Online: 10 August 2012

    Fund Project: 国家自然科学基金(No.51172233) (No.51172233)国家重点基础研究发展计划项目(973)(2009CB220002)资助项目。 (973)(2009CB220002)

  • CdSe/TiO2 nanotube array (TiO2NTA) film was modified by NixCo3-xO4 through the method of ammonia-evaporation induction growth. The films were characterized by X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance spectroscopy. To characterize the photoanodes activity of photoelectrochemical oxidation of water, the chopped linear sweep voltammetry was performed in a three-electrode system under simulated solar irradiation. The results show that CdSe/TiO2NTA is covered by a thin layer of NixCo3-xO4 with the spinel structure in which Ni and Co are both in divalent and trivalent states. The modification of NixCo3-xO4 on the CdSe/TiO2NTA can lower the overpotential of water oxidation by about 430 mV compared with the CdSe/TiO2NTA. The introduction of Ni into the structure of Co3O4 leads to the surface enhancement of trivalent cations (Ni3+ and Co3+) and consequently facilitates the oxidation of water.
  • 加载中
    1. [1]

      [1] Walter M G, Warren E L, Lewis N S, et al. Chem. Rev., 2010,110:6446-6473

    2. [2]

      [2] SHANGGUAN Wen-Feng(上官文峰). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2001,17:620-626

    3. [3]

      [3] Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001,293: 269-271

    4. [4]

      [4] Lei Z, Ma G, Li C, et al. J. Catal., 2006,237:322-329

    5. [5]

      [5] Maeda K, Takata T, Domen, K, et al. J. Am. Chem. Soc., 2005,127:8286-8287

    6. [6]

      [6] Maeda K, Domen K. J. Phys. Chem. C, 2007,111:7851-7861

    7. [7]

      [7] CUI En-Tian(崔恩田), LV Gong-Xuan(吕功煊). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26:2143-2149

    8. [8]

      [8] Zhang J, Yu J, Zhang Y, et al. Nano Lett., 2011,11:4774-4779

    9. [9]

      [9] ZHOU Peng(周鹏), LV Gong-Xuan(吕功煊), MA Jian-Tai (马建泰). J. Mol. Catal.(China)(Fenzi Cuihua), 2011,25:328-335

    10. [10]

      [10] Li Y, Chen G, Zhou C, et al. Chem. Commun., 2009:2020-2022

    11. [11]

      [11] Xu Z, Yu J, Liu G. Electrochem. Commun., 2011,13:1260-1263

    12. [12]

      [12] Ouyang J L, Chang M L, Li X J, et al. Thin Solid Films, 2012,520:2994-2999

    13. [13]

      [13] Hara M, Nunoshige J, Domen K, et al. Chem. Commun., 2003:3000-3001

    14. [14]

      [14] Ran J, Yu J, Jaroniec M. Green Chem., 2011,13:2708-2713

    15. [15]

      [15] Yu J, Ran J. Energy Environ. Sci., 2011,4:1364-1371

    16. [16]

      [16] Zhang J, Grzelczak M, Wang X, et al. Chem. Sci., 2012,3: 443-446

    17. [17]

      [17] Liang Y, Li Y, Dai H, et al. Nat. Mater., 2011,10:780-786

    18. [18]

      [18] Harriman A, Pickering I J, Thomas J M, et al. J. Chem. Soc., Faraday Trans. 1, 1988,84:2795-2806

    19. [19]

      [19] Hong Y R, Liu Z, Al-Bukhari S F B S A, et al. Chem. Commun., 2011,47:10653-10655

    20. [20]

      [20] Steinmiller E M P, Choi K S. Proc. Natl. Acad. Sci. U. S. A., 2009,106:20633-20636

    21. [21]

      [21] Zhong D K, Choi S, Gamelin D R. J. Am. Chem. Soc., 2011, 133:18370-18377

    22. [22]

      [22] Zhong D K, Sun J W, Gamelin D R, et al. J. Am. Chem. Soc., 2009,131:6086-6087

    23. [23]

      [23] Seabold J A, Choi K S. Chem. Mat., 2011,23:1105-1112

    24. [24]

      [24] Li Y, Hasin P, Wu Y. Adv. Mater., 2010,22:1926-1929

    25. [25]

      [25] Xia X, Tu J, Wang X, et al. J. Mater. Chem., 2011,21:9319-9325

    26. [26]

      [26] Xia X, Tu J, Wang X, et al. RSC Adv., 2012,2:1835-1841

    27. [27]

      [27] Oku M, Hirokawa K. J. Solid State Chem., 1979,30:45-53

    28. [28]

      [28] Chuang T, Brundle C, Rice D. Surf. Sci., 1976,59:413-429

    29. [29]

      [29] Choudhury T, Saied S, Abbot A M, et al. J. Phys. D: Appl. Phys., 1989,22:1185-1195

    30. [30]

      [30] Roginskaya Y E, Morozova O, Trasatti S, et al. Langmuir, 1997,13:4621-4627

    31. [31]

      [31] Gautier J, Rios E, Gracia M, et al. Thin Solid Films, 1997, 311:51-57

    32. [32]

      [32] Gerken J B, McAlpin J G, Stahl S S, et al. J. Am. Chem. Soc., 2011,133:14431-14442

    33. [33]

      [33] Yeo B S, Bell A T. J. Am. Chem. Soc., 2011,133:5587-5593

    34. [34]

      [34] Long M, Cai W, Cai J, et al. J. Phys. Chem. B, 2006,110: 20211-20216

    35. [35]

      [35] Puspharajah P, Radhakrishna S, Arof A. J. Mater. Sci., 1997,32:3001-3006

    36. [36]

      [36] Cui B, Lin H, Liu Y, et al. J. Phys. Chem. C, 2009,113: 14083-14087

    37. [37]

      [37] Xu Z, Yu J. Nanoscale, 2011,3:3138-3144

    38. [38]

      [38] Risch M, Klingan K, Dau H, et al. Chem. Commun., 2011, 47:11912-11914

    39. [39]

      [39] Jiao F, Frei H. Angew. Chem. Int. Ed., 2009,48:1841-1844

    40. [40]

      [40] Singh R N, Koenig J F, Poillerat G, et al. J. Electrochem. Soc., 1990,137:1408-1413

    41. [41]

      [41] Kay A, Cesar I, Grätzel M. J. Am. Chem. Soc., 2006,128: 15714-15721

    42. [42]

      [42] Hibbert D B, Churchill C R. J. Chem. Soc. Faraday Trans. 1, 1984,80:1965-1975

    43. [43]

      [43] Godinho M I, Catarino M A, Pereira M I, et al. Electrochim. Acta, 2002,47:4307-4314

    44. [44]

      [44] Wu G, Li N, Zhou D R, et al. J. Solid State Chem., 2004,177:3682-3692

    45. [45]

      [45] Lyons M E, Brandon M P. Int. J. Electrochem. Sci., 2008,3: 1386-1424

    46. [46]

      [46] Hu C C, Lee Y S, Wen T C. Mater. Chem. Phys., 1997,48: 246-254

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    10. [10]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    11. [11]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    12. [12]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    13. [13]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    17. [17]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    20. [20]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

Metrics
  • PDF Downloads(1400)
  • Abstract views(1955)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return