Citation: WANG Zi-Qing, LIN Jian-Xin, WANG Rong, WEI Ke-Mei. Ru-Based Catalysts Supported on Perovskite Type BaZrO3 for Ammonia Synthesis[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 493-499. doi: 10.3969/j.issn.1001-4861.2013.00.018 shu

Ru-Based Catalysts Supported on Perovskite Type BaZrO3 for Ammonia Synthesis

  • Received Date: 14 May 2012
    Available Online: 16 July 2012

    Fund Project: 中国石油科技创新基金(No.2010D-5006-0502) (No.2010D-5006-0502)国家科技支撑计划(2007BAE08B02)资助项目。 (2007BAE08B02)

  • The BaZrO3 material was synthesized by the citric acid method. A series of Ru/BaZrO3 catalyst samples were prepared using the above BaZrO3 calcined at different temperatures as the support. The support materials and catalyst samples were characterized by X-ray diffraction (XRD), H2 temperature programmed reduction (H2-TPR), CO2 temperature programmed desorption (CO2-TPD), N2 adsorption-desorption isotherms and scanning electron microscopy (SEM). The results show that the catalytic performance is greatly influenced by the calcination temperature of the BaZrO3 support. The highest catalytic activity for ammonia synthesis is obtained on the Ru-based catalyst with the support calcined at 750 ℃. The ammonia concentration of RBZ-750 can achieve to 9.12% under the condition of 425 ℃, 5 MPa and 10 000 h-1. The strong mental-support interaction and electron conductivity of the support may be the key factors for the high activity at low reaction temperature.
  • 加载中
    1. [1]

      [1] WANG Zi-Qing (王自庆), ZHANG Liu-Ming(张留明), LIN Jian-Xin(林建新), et al. Chin. J. Catal. (Cuihua Xuebao), 2012,33:377-388

    2. [2]

      [2] Zheng X, Zhang S, Xu J, et al. Carbon, 2002,40:2597-2603

    3. [3]

      [3] Li Y, Pan C, Han W, et al. Catal. Today, 2011,174:97-105

    4. [4]

      [4] Liang C, Li Z, Qiu J, et al. J. Catal., 2002,211:278-282

    5. [5]

      [5] WU Shan(吴山), ZHENG Chun-Ming(郑春明), CHEN Ji-Xin (陈继新), et al. Chin. J. Catal. (Cuihua Xuebao), 2004,25: 873-877

    6. [6]

      [6] ZHENG Yong(郑勇), ZHENG Ying(郑瑛), YU Wei-Peng (于伟鹏), et al. Chinese. J. Inorg. Chem.(Wuji Huaxue Xuebao), 2008,24:1007-1011

    7. [7]

      [7] HUO Chao(霍超), LIU Hua-Zhang(刘化章), YAN Gang (宴刚) . CN101053835. 2007-05-23

    8. [8]

      [8] LIN Jian-Xin (林建新), ZHANG Liu-Ming (张留明), NI Jun (倪军), et al. Acta Chimica Sinica (Huaxue Xuebao), 2012, 70:137-142

    9. [9]

      [9] Ma G, Matsumoto H, Iwahara H. Solid State Ionics, 1999, 122:237-247

    10. [10]

      [10] Marnellos G, Stoukides M. Seience, 1998,282:98-99

    11. [11]

      [11] MA Gui-Lin(马桂林), QIU Li-Gan (仇立干), CHEN Rong (陈蓉). Acta Chimica Sinica (Huaxue Xuebao), 2002,12: 2135-2140

    12. [12]

      [12] KANG Xin-Hua (康新华), YU Jie (于玠), MA Gui-Lin (马桂林). Chinese. J. Inorg. Chem. (Wuji Huaxue Xuebao), 2006,22:738-742

    13. [13]

      [13] Yin J, Wang X, Xu J, et al. Solid State Ionics, 2011,185: 6-10

    14. [14]

      [14] Li Z, Liu R, Xie Y, et al. Solid State Ionics, 2005,176:1063-1066

    15. [15]

      [15] SU Xin-Tai (宿新泰), LIU Rui-Quan (刘瑞泉), WANG Ji-De (王吉德). Acta Chimica Sinica (Huaxue Xuebao), 2003, 61:505-509.

    16. [16]

      [16] Yang X L, Zhang W Q, Xia C G, et al. Catal. Commun., 2010,11:867-870

    17. [17]

      [17] Yiokari C G, Pitselis G E, Polydoros D G, et al. J. Phys. Chem. A, 2000,104:10600-10602

    18. [18]

      [18] YANG Xiao-Long(杨晓龙), TANG Li-Ping(唐立平), XIA Chun-Gu(夏春谷). et al. Chin. J. Catal. (Cuihua Xuebao), 2012,33:447-453

    19. [19]

      [19] YANG Xiao-Long(杨晓龙),XIA Chun-Gu(夏春谷),TANG Li-Ping(唐立平), et al. Chinese. J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27:1541-1549

    20. [20]

      [20] Yu X, Lin B, Gong B, et al. Catal. Lett., 2008,124:168-173

    21. [21]

      [21] YANG Xiao-Long(杨晓龙), TANG Li-Ping(唐立平), XIA Chung-Gu(夏春谷). et al. J. Molec. Catal. (Fenzhi Cuihua), 2012,26:1-9

    22. [22]

      [22] GAO Wei-Jie(高伟洁), GUO Shu-Jing(郭淑静), ZHANG Hong-Bo(张洪波), et al. Chin. J. Catal.(Cuihua Xuebao), 2011,32:1418-1423

    23. [23]

      [23] Truszkiewicz E, Raróg-Pilecka W, Schmidt-Szaowski K, et al. J. Catal., 2009,265:181-190

    24. [24]

      [24] Zheng Y, Zheng Y, Li Z, et al. J. Molec. Catal. A, 2009, 301:79-83

    25. [25]

      [25] Tanaka H, Misono M. Curr. Opin. Solid. State. Mater. Sci., 2001,5:381-387

    26. [26]

      [26] Kumar S, Teraoka Y, Joshi A G, et al. J. Molec. Catal. A, 2011,348:42-54

    27. [27]

      [27] Seetharamulu P, Hari Prasad Reddy K, Padmasri A H, et al. Catal. Today, 2009,141:94-98

    28. [28]

      [28] HU Quan-Hong(胡全红), LI Xian-Cai(黎先财), YANG Ai-Jun(杨爱军). Nature Gas Chemical Industry(Tianranqi Huagong), 2009,34:1-5

    29. [29]

      [29] Li X C, Wu M, Lai Z H, et al. Appl. Catal. A, 2005,290: 81-86

    30. [30]

      [30] Huo H, Xu Q H, Pan M H, et al. Catal. Lett., 2011,141: 1275-1281

    31. [31]

      [31] Ishikawa H, Kondo J N, Domen K. J. Phys. Chem. B, 1999,103:3229-3234

    32. [32]

      [32] Lin B, Wang R, Lin J, et al. Catal. Commun., 2007,8:1838-1842

    33. [33]

      [33] Lin B, Wang R, Lin J, et al. Catal. Commun., 2011,12:553-558

    34. [34]

      [34] Lin B, Wang R, Lin J, et al. Catal. Commun., 2011,12: 1452-1457

    35. [35]

      [35] Zhang L, Lin J, Ni J, et al. Catal. Commun., 2011,15:23-26

    36. [36]

      [36] LIN Jian-Xin(林建新), ZHANG Liu-Ming(张留明), WANG Rong(王榕), et al. Chinese. J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28:1377-1382

    37. [37]

      [37] Izumi Y, Aika K. J. Phys. Chem., 1995,99:10346-10353

    38. [38]

      [38] Izumi Y, Aika K. J. Phys. Chem., 1995,99:10336-10345

    39. [39]

      [39] Iwamoto J, Itoh M, Kajita Y, et al. Catal. Commun., 2007,8: 941-944

    40. [40]

      [40] Tauster S J, Fung S C, Baker R T K. et al. Science, 1981,211:1121-1125

    41. [41]

      [41] Guo S J, Pan X L, Gao H L, et al. Chem. Eur. J., 2010,16: 5379-5384

    42. [42]

      [42] Izumi Y, IwataY, Aika K. J. Phys. Chem., 1996,100:9421-9428

    43. [43]

      [43] Yue C Y, Trudeau M, Antonelli D. Chem. Commun., 2006,18:1918-1920

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    6. [6]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    7. [7]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    8. [8]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    11. [11]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    12. [12]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    13. [13]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    14. [14]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    17. [17]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    18. [18]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    19. [19]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(544)
  • Abstract views(693)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return