Citation:
ZHANG Kai, HUANG Chunbao, SHEN Huifang, CHEN Huanqin. Structure and Morphology of Polychloroprene-Polymethylmethacrylate Composite Latex Particles[J]. Chinese Journal of Applied Chemistry,
;2012, 29(10): 1111-1116.
doi:
10.3724/SP.J.1095.2012.00522
-
Polychloroprene-polymethylmethacrylate(PCR-PMMA) composite latex particles have been prepared through the seed emulsion polymerization with polychloroprene latex(Pa) and methyl methacrylate(Pb) as the seed and monomer,respectively.Thermodynamic analysis results showed that when Φb(volume fraction of polymer b)0.69,the Pa-Pb core-shell latex particles and(Pa+Pb) separated latex particles were formed;while when Φb0.69,the inverted Pb-Pa core-shell latex particles and Pa-Pb core-shell latex particles were formed.Kinetic analysis results showed that the initiator type,the monomer feed type,crosslinking of the seed latex particles,and the monomer-to-rubber ratios were major factors influencing the particle morphology.When potassium persulfate was used as the initiator,the monomer-starved conditions led to the formation of normal core-shell particles,whereas flooded-feed MMA could not favor in formation of typical core-shell particle.While when azobisisobutyronitrile(AIBN) was used as the initiator,it led to the formation of inverted core-shell particles no matter if monomer-starved or flooded condition was used.Crosslinking of the polychloroprene seed particles was found to favor to form obvious core-shell PCR-PMMA particles.With the monomer-to-rubber ratio increasing,the shell layer turned thicker,the composite latex particle still showed core-shell structure,which was in agreement with the predicted results of thermodynamic analysis.The inverted core-shell PCR-PMMA composite latex particles were gradually changed to interpenetrating structure as the amount of monomer was increased when AIBN was used.
-
-
-
-
[1]
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
-
[2]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[3]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[4]
Ying Yang , Yonghan Wu , Zixuan Li , Lu Zhang , Rongqin Lin , Yefan Zhang , Jiquan Liu , Xiaohui Ning , Yan Li , Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024
-
[5]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[6]
Chunguang Rong , Miaojun Xu , Xingde Xiang , Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146
-
[7]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[8]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[9]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[10]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[11]
Fengmei Wang , Xin Zhang , Hong Yan , Xiangyu Xu , Guirong Wang . Inverted 'Π' Graphic Memory Method for Thermodynamic Basic Equations and the Application in Teaching Practice. University Chemistry, 2025, 40(11): 369-375. doi: 10.12461/PKU.DXHX202412087
-
[12]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[13]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
-
[14]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[15]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[16]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[17]
Ziyu Bai , Jiaxin Zhou , Sisi Zhao , Siyu Teng , Xinxin Li , Xiting Wang , Yuwei Dong , Zhen Zhao . Delving into the Captivating Color Transformation of Cobalt: Digital Empowerment of Intelligent Visual Robot Monitoring System for Measuring Thermodynamic Parameters. University Chemistry, 2026, 41(1): 122-132. doi: 10.12461/PKU.DXHX202505103
-
[18]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[19]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[20]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(476)
- HTML views(50)
Login In
DownLoad: